Advertisement

Radiophysics and Quantum Electronics

, Volume 60, Issue 8, pp 609–617 | Cite as

On Spatial Structuring of the F2 Layer Studied by the Satellite Radio Sounding of the Ionosphere Disturbed by High-Power HF Radio Waves

  • E. D. Tereshchenko
  • V. A. Turyansky
  • B. Z. Khudukon
  • R. Yu. Yurik
  • V. L. Frolov
Article
  • 22 Downloads

We present the results of studying the characteristics of the artificial plasma structures excited in the ionospheric F2 region modified by high-power HF radio waves. The experiments were carried out at the Sura heating facility using satellite radio sounding of the ionosphere. The plasma density profile was reconstructed with the highest possible spatial resolution for today, about 4 km. In a direction close to the magnetic zenith of the pump wave, the following phenomena were observed: the formation of a cavity with a 15% lower plasma density at the altitudes of the F2 layer and below; the formation of an area with plasma density increased by 12% at altitudes greater than 400 km. With a long-term quasiperiodic impact of the pump wave on the ionosphere, wavy large-scale electron-density perturbations (the meridional scale λx ≈ 130 km and the vertical scale λz ≈ 440 km) are also formed above the Sura facility. These perturbations can be due to the plasma density modulation by an artificial acoustic-gravity wave with a period of 10.6 m, which was formed by the heat source inside a large-scale cavity with low plasma density; there is generation of the electron density irregularities for the electrons with ΔNe/Ne ≈ 3% in the form of layers having the sizes 10–12 km along and about 24 km across the geomagnetic field, which are found both below and above the F2-layer maximum. The mechanisms of the formation of these plasma structures are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Gurevich, Phys. Usp., 50, No. 11, 1091 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    H. C. Carlson, V.B.Wickwar, and G. P.Mantas, J. Atmos. Terr. Phys., 44, No. 12, 1089 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    T. B. Leyser, B.Gustavsson, et al., Adv. Polar Upper Atmos. Res., 14, 1 (2000).Google Scholar
  4. 4.
    D. F. DuBois, A.H.Rose, and D.Russel, J. Geophys. Res., 95, A12, 21221 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    V. V.Vas’kov and A. V. Gurevich, Sov. Phys. JETP, 46, No. 3, 487 (1977).ADSGoogle Scholar
  6. 6.
    T. R. Robinson, Phys. Reports, 179, Nos. 2–3, 79 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    S. M. Grach, N. A. Mityakov, and V.Yu.Trakhtengerts, Radiophys. Quantum Electron., 27, No. 9, 176 (1984).CrossRefGoogle Scholar
  8. 8.
    P.A.Bernhardt, C.A.Tepley, and L.M.Duncan, J. Geophys. Res., 94, No. A7, 9071 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    M. J.Kosch, M.T.Rietveld, T.Hagfors, and T.B. Leyser, Geophys. Res. Lett., 27, No. 17, 2817 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    A.Gurevich, E. Fremouw, J. Secan, and K. Zybin, Phys. Lett. A, 301, Nos. 3–4, 307 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    V. L. Frolov, N.V.Bakhmet’eva, et al., Phys. Usp., 50, No. 3, 315 (2007).CrossRefGoogle Scholar
  12. 12.
    V. L. Frolov, Soln.-Zemn. Fiz., 1, No. 2, 33 (2015).Google Scholar
  13. 13.
    L.M. Erukhimov, S.A.Metelev, E.N.Myasniukov, et al., Radiophys. Quantum Electron., 30, No. 2, 156 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    V. L. Frolov, L.M. Erukhimov, S.A.Metelev, and E. N. Sergeev, J. Atmos. Solar-Terr. Phys., 59, No. 18, 2317 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    E. N.Myasnikov and N. V.Murav’eva, Radiophys. Quantum Electron., 50, No. 8, 657 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Gurevich, K.P. Zybin, H.C.Carlson, and T.Pedersen, Phys. Lett. A, 305, No. 5, 264 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    E.D.Tereshchenko, B. Z.Khudukon, T.Rietveld, and A.Brekke, Ann. Geophys., 16, No. 7, 812 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    E.D.Tereshchenko, B. Z.Khudukon, A.V.Gurevich, et al., Phys. Lett. A, 325, Nos. 5–6, 381 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    S. H. Francis, J. Atmos. Terr. Phys., 37, 1011 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    F. S. Johnson, W.B.Hanson, R. R.Hodges, et al., J. Geophys. Res., 100, No. A12, 23993 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    N. F. Blagoveshchenskaya, Geophysical Effects of Active Impacts in Near-Earth Space [in Russian], Gidrometeoizdat, St.Petersburg (2001), p. 82.Google Scholar
  22. 22.
    L. F.Chernogor and V. L. Frolov, Radiophys. Quantum Electron., 56, No. 4, 197 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    L. F.Chernogor and V. L. Frolov, Radiophys. Quantum Electron., 56, No. 5, 276 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    V.E.Kunitsyn, E. S.Andreeva, V. L. Frolov, et al., Radio Sci., 47, No. 3, RS0L15 (2012).Google Scholar
  25. 25.
    V. E. Kunitsyn and E.D.Tereshchenko, Ionospheric Tomography, Springer-Verlag, Berlin (2003).CrossRefGoogle Scholar
  26. 26.
    M. Markkanen, M. Lehtinen, T.Nygrén, et al., Ann. Geophysicae, 13, No. 12, 1277 (1995).Google Scholar
  27. 27.
    T. Nygrén, M.Markkanen, M. Lehtinen, et al., Radio Sci., 32, No. 6, 2359 (1997).ADSCrossRefGoogle Scholar
  28. 28.
    V. E. Kunitsyn and E.D.Tereshchenko, Ionospheric Tomography [in Russian], Nauka, Moscow (1991).Google Scholar
  29. 29.
    E.D.Tereshchenko, B. Z.Khudukon, M.O.Kozlova, and T.Nygrén, Ann. Geophys., 17, No. 4, 508 (1999).ADSCrossRefGoogle Scholar
  30. 30.
    I. F. Domnin, S.V. Panasenko, V. P.Uryadov, and L. F.Chernogor, Radiophys. Quantum Electron., 55, No. 4, 253 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    V. L. Frolov, V.O.Rapoport, E. A. Shorokhova, et al., Radiophys. Quantum Electron., 59, No. 3, 177 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    G. I. Grigor’ev, Radiophys. Quantum Electron., 18, No. 12, 1335 (1975).ADSCrossRefGoogle Scholar
  33. 33.
    E. Mishin, E. Sutton, G. Milikh, et al., Geophys. Res. Lett., 39, No. 1, L11101 (2012).ADSGoogle Scholar
  34. 34.
    B. N. Gershman, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 32, No. 12, 1571 (1989) [in Russian].ADSGoogle Scholar
  35. 35.
    A.K. Fedorenko, Geomag. Aeron., 50, No. 1, 107 (2010).CrossRefGoogle Scholar
  36. 36.
    G. V. Lizunov and A.Yu. Leont’ev, Geomag. Aeron., 54, No. 6, 841 (2014).CrossRefGoogle Scholar
  37. 37.
    M.C.Kelley, T. L. Arce, J. Salowey, et al., J. Geophys. Res., 100, No. A9, 17367 (1995).ADSCrossRefGoogle Scholar
  38. 38.
    F.T. Djuth, B. W. Reinisch, et al., Geophys. Res. Lett., 33, No. 4, L04107 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. D. Tereshchenko
    • 1
  • V. A. Turyansky
    • 1
  • B. Z. Khudukon
    • 1
  • R. Yu. Yurik
    • 1
  • V. L. Frolov
    • 2
    • 3
  1. 1.Polar Geophysical InstituteMurmanskRussia
  2. 2.Radiophysical Research Institute of the N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  3. 3.Kazan (Volga) Federal UniversityKazanRussia

Personalised recommendations