Skip to main content
Log in

Mean-Frequency Shift of the Envelope Solitons in Media with Cubic Relaxing Nonlinearities

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the mean-frequency variation of the envelope solitons propagating in nonlinear media with relaxing cubic nonlinearities. It is shown that the mean frequency in the propagation cannot only decrease in the case of the positive nonlinearity coefficient, which was previously known, but also increase in the case of the negative nonlinearity coefficient, which is observed for the gravity waves on a liquid surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Alfano, ed., The Supercontinuum Laser Source, Springer, New York (2006).

    Google Scholar 

  2. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses, ATP Press, New York (1991).

    Google Scholar 

  3. Y. S. Kivshar and G. P. Agraval, Optical Solitons: From fiber to Photonic Cristals, Academic Press, San Diego (2003).

    Google Scholar 

  4. V. B. Gildenburg, A. V. Kim, V. A. Krupnov, et al., IEEE Trans. Plasma Sci., 21, No. 1, 34 (1993).

    Article  ADS  Google Scholar 

  5. A. Sergeev, E. Vanin, D. Anderson, et al., Opt. Commun., 101, Nos. 3–4, 219 (1993).

    Google Scholar 

  6. E. I. Vanin and A. I. Smirnov, J. Exp. Theor. Phys., 110, No. 3, 628 (1996).

    ADS  Google Scholar 

  7. J. P. Gordon, Opt. Lett., 11, No. 10, 662 (1986).

    Article  ADS  Google Scholar 

  8. J. Lighthill, Waves in Fluids, Cambridge University Press, Cambridge (1978).

    MATH  Google Scholar 

  9. V. E. Zakharov, Prikl. Mat. Tekh. Fiz., No. 2, 86 (1968).

    Google Scholar 

  10. H. C. Yuen and B. M. Lake, Nonlinear Dynamics of Deep-Water Gravity Eaves [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  11. H. Segur, D. Henderson, J. Carter, et al., J. Fluid Mech., 539, 229 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Thrulsen and K. B. Dysthe, Wave Motion, 24, No. 3, 281 (1996).

    Article  MathSciNet  Google Scholar 

  13. B. M. Lake, H. C. Yuen, H. Rundgaldier, and W. E. Ferguson, J. Fluid Mech., 83, No. 1, 49 (1977).

    Article  ADS  Google Scholar 

  14. B. M. Lake and H. C. Yuen, J. Fluid Mech., 83, No. 1, 75 (1977).

    Article  ADS  Google Scholar 

  15. L. N. Sretensky, Theory of the Wave Motions of Fluid [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  16. A. Ya. Basovich and V. I. Talanov, Fiz. Atmos. Okeana, 13, No. 7, 766 (1977).

    Google Scholar 

  17. S. Leblanc, Phys. Fluids, 19, 101705 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Vlasov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 6, pp. 558–563, June 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, S.N. Mean-Frequency Shift of the Envelope Solitons in Media with Cubic Relaxing Nonlinearities. Radiophys Quantum El 60, 501–505 (2017). https://doi.org/10.1007/s11141-017-9819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9819-6

Navigation