Skip to main content
Log in

The Diamond Window with Boron-Doped Layers for the Output of Microwave Radiation at High Peak and Average Power Levels

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose a novel design of the barrier window for the output of microwave radiation at high peak and average power levels. A window based on a plate of polycrystalline CVD diamond with thin (nanometer-thick) boron-doped layers with increased conductivity is considered. Such a window, which retains the low radiation loss due to the small total thickness of the conductive layers and the high thermal conductivity inherent in diamond, prevents accumulation of a static charge on its surface, on the one hand, and allows one to produce a static electric field on the surface of the doped layer, which impedes the development of a multipactor discharge, on the other hand. In this case, a high level of the power of the transmitted radiation and a large passband width are ensured by choosing the configuration of the field in the form of a traveling wave inside the window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.M.Garin, V.V.Parshin, S. E.Myasnikova, and V.G. Ralchenko, Diamond Rel. Mater., 12, 1755 (2003).

  2. A. Ibarra, M. Gonzfilez, R. Vila, and J. Mollfi, Diam. Rel. Mater., 6, 856 (1997).

    Article  Google Scholar 

  3. V. V. Parshin, A. L. Vikharev, R. Heidinger, et al., Proc. 35th IEEE Int. Conf. on Plasma Science, Karlsruhe, Germany, June 15–19, 2008, doi: 10.1109/PLASMA.2008.4590796.

  4. Status and Applications of Diamond and Diamond-Like Materials: An Emerging Technology. Report of the Committee on Superhard Materials, NMAB-445, National Academy Press, Washington (1990).

  5. A. G. Litvak, G.G. Denisov, V.E.Myasnikov, et al., J. Infrared Millim. Terahertz Waves, 32, 337 (2011).

  6. M. Thumm, IEEE Trans. Plasma Sci., 39, 971 (2011).

    Article  ADS  Google Scholar 

  7. A. Neuber, J.Dickens, D.Hemmert, et al., IEEE Trans. Plasma Sci., 26, 296 (1998).

  8. R. A.Kishek and Y.Y. Lau, Phys. Rev. Lett., 80, 193 (1998).

    Article  ADS  Google Scholar 

  9. O. A. Ivanov, M.A. Lobaev, V. A. Isaev, et al., Plasma Phys. Reports, 36, No. 4, 336 (2010).

  10. A. L. Vikharev, A. M. Gorbachev, O. A. Ivanov, et al., Phys. Rev. ST-Accel. Beams, 12, Art. no. 062003 (2009).

  11. U.Klein and D. Pronch, in: Proc. Conf. on Future Possibilities of Electron Accelerators, Univ. of Virginia, Charlottesville (1979), p. 1.

  12. H.Padamsee, D. Pronch, P.Kneisel, et al., IEEE Trans. Magn., 17, 947 (1981).

    Article  ADS  Google Scholar 

  13. C.Chang, H. J. Huang, G. Z. Liu, et al., J. Appl. Phys., 105, Art. no. 123305 (2009).

  14. A. R. Nayaiesh, E. L.Garwin, F.K.King, et al., J. Vac. Sci. Technol., 4, No. 5, 2356 (1986).

  15. S. Michizono, A.Kinbara, Y. Saito, et al., J. Vac. Sci. Technol. A, 10, No. 4, 1180 (1992).

  16. L. L. Hatfield, E. R. Boerwinkle, G.R. Leiker, et al., IEEE Trans. Electr. Insul., 24, No. 6, 985 (1989).

    Article  Google Scholar 

  17. J.Tuckmantel, Technical Report 94-26, CERN LEP-2 Notes, Geneva (1994).

  18. O. A. Ivanov, M.A. Lobaev, V. A. Isaev, and A. L. Vikharev, Phys. Rev. ST-Accel. Beams, 13, 022004 (2010).

  19. P. Yla-Oijala and M. Ukkola, Nucl. Instrum. Methods Phys. Res., A474, 197 (2001).

    Article  ADS  Google Scholar 

  20. A.Valfells, L.K.Ang, Y.Y. Lau, et al., Phys. Plasmas, 7, No. 2, 750 (2000).

  21. X. Zhang, Y.Wang, and J. Fan, Phys. Plasmas, 22, 022110 (2015).

  22. W.D.Moller, Q. S. Shu, J. T. Susta, et al., in: 12th Int. Workshop on RF Superconductivity, 441, Nos. 1–2, 239 (2005).

  23. S. Bogdanov, A. Vikharev, A. Gorbachev, et al., Chem. Vap. Deposition, 20, 32 (2014).

    Article  Google Scholar 

  24. A. Fiori, F. Jomard, T.Teraji, et al., Thin Solid Films, 557, 222 (2014).

    Article  ADS  Google Scholar 

  25. A. L. Vikharev, A. M. Gorbachev, M. A. Lobaev, et al., Phys. Status Solidi RRL, 10, 324 (2016).

    Article  Google Scholar 

  26. R.Edgington, S. Sato, Y. Ishiyama, et al., J. Appl. Phys., 111, 033710 (2012).

  27. C. Mer-Calfati, N.Tranchant, P. N.Volpe, et al., Mater. Lett., 115, 283 (2014).

    Article  Google Scholar 

  28. S. Michizono, A.Kinbara, Y. Saito, et al., J. Vac. Sci. Technol., A10, No. 4, 1180 (1992).

  29. J. Barjon, N.Habka, C.Mer, et al., Phys. Status Solidi RRL, 3, No. 6, 202 (2009).

  30. Y.Otake, S.Tokumoto, S.Yu.Kazakov, et al., in: Proc. Third Workshop on Pulsed RF Sources Linear Colliders, Kanagawa, Japan, April 1996, p. 315.

  31. S.Tokumoto, Y.H.Chin, H. Mizuno, et al., arXiv:hep-ex/0008039 (2000).

  32. S.Kazakov, High-power RF Sources and Components for Linear Colliders, Fermi National Accelerator Laboratory, Chicago (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.A. Ivanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 5, pp. 449–457, May 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, O., Kuzikov, S.V., Vikharev, A.A. et al. The Diamond Window with Boron-Doped Layers for the Output of Microwave Radiation at High Peak and Average Power Levels. Radiophys Quantum El 60, 401–408 (2017). https://doi.org/10.1007/s11141-017-9809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9809-8

Navigation