Skip to main content
Log in

Excitation of Artificial Ionospheric Turbulence in the High-Latitude Ionospheric F Region as a Function of the Eiscat/Heating Effective Radiated Power

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of experimental studies of the parameters of HF-enhanced ion–acoustic and Langmuir plasma waves, as well as small-scale artificial field-aligned irregularities (AFAIs) when the EISCAT/Heating effective radiated power is varied from 10 to 560 MW. In the course of the experiments, a high-power HF radio wave with the alternating ordinary (O-mode) and extraordinary (X-mode) polarizations was radiated towards the magnetic zenith at a frequency of 7.953 MHz lying below the cutoff frequency of the F2 layer. A fundamental difference in the development of artificial ion–acoustic and Langmuir turbulence, which is seen as HF-enhanced ion and plasma lines in the EISCAT spectra, under the O- and X-mode HF pumping was found. The minimum values of the HF pump-wave electric fields in the ionosphere when the HF-enhanced ion and plasma lines, as well as small-scale artificial field-aligned irregularities, start to be excited, were determined from experimental data both for the O- and X-mode HF pumping. Comparison between the experimental and theoretical threshold values of the electric field required for the excitation of artificial ionospheric turbulence in thermal, Langmuir, and ion–acoustic modes in the high-latitude ionospheric F2 layer for the O-mode HF pump wave was made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gurevich, Phys. Usp., 50, No. 11, 1091 (2007).

    Article  ADS  Google Scholar 

  2. T. R. Robinson, Phys. Rep., 179, Nos. 2–3, 79 (1989).

  3. P. Stubbe and H. Kopka, Radio Sci., 18, No. 6, 831 (1983).

    Article  ADS  Google Scholar 

  4. S. P. Kuo and M. C. Lee, J. Geophys. Res., 110, No. A1, A01309 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  5. M. T. Rietveld, M. J. Kosch, N. F. Blagoveshchenskaya, et al., J. Geophys. Res., 108, No. A4, 1141 (2003).

    Article  Google Scholar 

  6. P. Stubbe, J. Atmos. Terr. Phys., 58, Nos. 1–4, 349 (1996).

  7. J. A. Fejer, Rev. Geophys. Space Phys., 17, No. 1, 135 (1979).

    Article  ADS  Google Scholar 

  8. S. Kuo, M. Lee, and P. Kossey, Geophys. Res. Lett., 24, No. A10, 2969 (1997).

    Article  ADS  Google Scholar 

  9. S. M. Grach, A. N. Karashtin, N. A. Mityakov, et al., Radiophys. Quantum Electron., 20, No. 12, 1254 (1997).

    Article  ADS  Google Scholar 

  10. V. V. Vas’kov and A. V. Gurevich, in: Thermal Nonlinear Phenomena in Plasmas [in Russian], Inst. Appl. Phys. USSR Acad. Sci (1979), p. 818.

  11. M. Ashrafi, M. J. Kosch, K. Kaila, and B. Isham, J. Geophys. Res., 112, No. A5, A05314 (2007).

    Article  ADS  Google Scholar 

  12. E. V. Mishin, M. J. Kosch, T. R. Pedersen, and W. J. Burke, Geophys. Res. Lett., 32, No. 23, L23106 (2005).

    Article  ADS  Google Scholar 

  13. T. D. Borisova, N. F. Blagoveshchenskaya, A. S. Kalishin, et al., Radiophys. Quantum Electron., 57, No. 1, 1 (2014).

    Article  ADS  Google Scholar 

  14. T. D. Borisova, N. F. Blagoveshchenskaya, A. S. Kalishin, et al., Radiophys. Quantum Electron., 58, No. 8, 561 (2015).

    Article  ADS  Google Scholar 

  15. C. J. Bryers, M. J. Kosch, A. Senior, et al., J. Geophys. Res., 117, No. A9, A09301 (2012).

    Article  ADS  Google Scholar 

  16. A. Senior, M. T. Rietveld, T. K. Yeoman, et al., J. Geophys. Res., 117, No. A4, A04309 (1012).

    ADS  Google Scholar 

  17. S. P. Kuo, J. Geophys. Res., 106, No. A4, 5593 (2001).

    Article  ADS  Google Scholar 

  18. P. Stubbe, H. Kohl, and M. T. Rietveld, J. Geophys. Res., 97, No. A5, 6285 (1992).

    Article  ADS  Google Scholar 

  19. P. Stubbe and H. Kopka, in: Exploration of the Polar Upper Atmosphere, Vol. 64 of NATO Advanced Study Institutes Series, Springer, Dordrecht (1981), p. 83.

  20. A. Das and J. Fejer, J. Geophys. Res., 84, No. A11, 6701 (1979).

    Article  ADS  Google Scholar 

  21. V. L. Frolov, L. M. Erukhimov, S. A. Metelev, and E. N. Sergeev, J. Atm. Terr. Phys., 59, No. 18, 2317 (1997).

    Article  ADS  Google Scholar 

  22. C. J. Bryers, M. J. Kosch, A. Senior, et al., J. Geophys. Res. Space Phys., 118, No. 11, 7472 (2013).

    Article  ADS  Google Scholar 

  23. N. F. Blagoveshchenskaya, T. D. Borisova, T. K. Yeoman, et al., Geophys. Res. Lett., 38, No. 8, L08802 (2011).

    Article  ADS  Google Scholar 

  24. N. F. Blagoveshchenskaya, T. D. Borisova, T. K. Yeoman, et al., J. Atmos. Solar-Terr. Phys., 105–106, 231 (2013).

  25. N. F. Blagoveshchenskaya, T. D. Borisova, M. Kosch, et al., J. Geophys. Res. Space Phys., 119, No. 12, 10483 (2014).

    Article  ADS  Google Scholar 

  26. N. F. Blagoveshchenskaya, T. D. Borisova, T. K. Yeoman, et al., J. Atmos. Solar-Terr. Phys., 35, 50 (2015).

    Article  ADS  Google Scholar 

  27. M. T. Rietveld, H. Kohl, H. Kopka, and P. Stubbe, J. Atmos. Terr. Phys., 55, Nos. 4–5, 577 (1993).

  28. http://spaceweather.com.

  29. http://wdc.kugi.kyoto-u.ac/jp.

  30. H. Rishbeth and T. van Eyken, J. Atmos. Terr. Phys., 55, Nos. 4–5, 525 (1993).

  31. R. A. Greenwald, K. B. Baker, J. R. Dudeney, et al., Space Sci. Rev., 71, Nos. 1–4, 761 (1995).

  32. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon, Oxford (1970).

    Google Scholar 

  33. M. S. Lehtinen and A. Huuskonen, J. Atmos. Terr. Phys., 58, Nos. 1–4, 435 (1996).

  34. P. Stubbe, H. Kopka, B. Thide, et al., J. Geophys. Res., 89, No. A9, 7523 (1984).

    Article  ADS  Google Scholar 

  35. M. Nicolet, J. Atmos. Terr. Phys., 3, No. 4, 200 (1953).

    Article  ADS  Google Scholar 

  36. http://omniweb.gsfc.nasa.gov/vitmo/msis_vitmo.html.

  37. S. Kuo, Phys. Plasmas, 22, No. 1, 012901 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Borisova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 4, pp. 305–325, April 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, T.D., Blagoveshchenskaya, N.F., Yeoman, T.K. et al. Excitation of Artificial Ionospheric Turbulence in the High-Latitude Ionospheric F Region as a Function of the Eiscat/Heating Effective Radiated Power. Radiophys Quantum El 60, 273–290 (2017). https://doi.org/10.1007/s11141-017-9798-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9798-7

Navigation