Skip to main content

Advertisement

Log in

Energy Limitations for Neodymium Glass Lasers with Beam Apertures of 45 and 60 mm

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the possibility of increasing the pulse energy and repetition rate of the 220-J neodymium glass laser for pumping high-power Ti:Sapphire chirped pulse amplifiers. Stable operation of neodymium glass rod amplifiers with an aperture of 45 mm for elastic stresses constituting 40% of the active-medium damage threshold has been demonstrated experimentally. This regime corresponds to the pulse repetition rate 1/30 Hz, which is a record one for pulsed laser amplifiers with stored energy exceeding 100 J. We have developed quantrons for neodymium glass rod active elements with an aperture of 60 mm, which permits a twofold increase in the output radiation energy with the same thermal load on the active elements as for rods 45 mm in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Bayanov, V. I. Kryzhanovsky, V.A. Serebryakov, et al., Quantum Electron., 14, No. 2, 213 (1984).

    ADS  Google Scholar 

  2. V. I. Bayanov, E. G. Bordachev, V. M.Volynkin, et al., Quantum Electron., 6, No. 9, 1240 (1986).

    ADS  Google Scholar 

  3. A. A. Mak, L. N. Soms, V. A. Fromzel’, and V. E. Yashim, Neodymium Glass Lasers [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  4. E. A.Khazanov and A.M. Sergeev, Phys. Usp., 51, 969 (2008).

    Article  ADS  Google Scholar 

  5. A. A.Kuzmin, G.A. Luchinin, A.K.Poteomkin, et al., Quantum Electron., 39, No. 10, 895 (2009).

    Article  ADS  Google Scholar 

  6. A.A. Kuzmin, E.A.Khazanov, and A.A. Shaykin, Opt. Express, 19, No. 15, 14223 (2011).

    Article  ADS  Google Scholar 

  7. A.A. Kuzmin, E.A.Khazanov, and A.A. Shaykin, Quantum Electron., 42, No. 4, 283 (2012).

    Article  ADS  Google Scholar 

  8. W. C. Scott and M. de Wit, Appl. Phys. Lett ., 18, No. 1, 3 (1971).

    Article  ADS  Google Scholar 

  9. A. A.Kuzmin, D.E. Silin, A.A. Shaykin, et al., J. Opt. Soc. Amer. B, 29, No. 6, 1152 (2012).

    Article  ADS  Google Scholar 

  10. A. A.Kuzmin, O.V.Kulagin, E. A.Khazanov, and A. A. Shaykin, Quantum Electron., 43, No. 7, 597 (2013).

    Article  ADS  Google Scholar 

  11. A.A. Kuzmin, E.A.Khazanov, O.V. Kulagin, and A.A. Shaykin, Opt. Express, 22, No. 17, 20842 (2014).

    Article  ADS  Google Scholar 

  12. N. F. Andreev, N.G.Bondarenko, I. V. Eremina, et al., Sov. J. Quantum Electron., 21, No. 10, 1045 (1991).

    Article  ADS  Google Scholar 

  13. A.K.Potemkin, K.A. Zhurin, A. V.Kirsanov, et al., Quantum Electron., 41, No. 6, 487 (2011).

    Article  ADS  Google Scholar 

  14. W. H. Lowdermilk and D.Milam, IEEE J. Quantum Electron., 17, No. 12, 1888 (1981).

    Article  ADS  Google Scholar 

  15. J. Bunkenberg, J.Boles, D.C.Brown, et al., IEEE J. Quantum Electron., 17, No. 9, 1620 (1981).

    Article  ADS  Google Scholar 

  16. V. I. Bespalov and I.Talanov, JETP Lett ., 3, No. 12, 307 (1966).

    ADS  Google Scholar 

  17. D. Speck, E. S. Bliss, J. Glaze, et al., IEEE J. Quantum Electron., 17, No. 9, 1599 (1981).

    Article  ADS  Google Scholar 

  18. S. N. Vlasov, V. P.Kryzhanovskii, and V. E.Yashin, Sov. J. Quantum Electron., 12, No. 1, 7 (1982).

    Article  ADS  Google Scholar 

  19. M. S.Kochetkova, M.A.Martyanov, A.K. Poteomkin, and E. A.Khazanov, Opt. Express, 18, No. 12, 12839 (2010).

    Article  ADS  Google Scholar 

  20. M. S.Kuzmina, M. A. Martyanov, A.K. Poteomkin, et al., Opt. Express, 19, No. 22, 21977 (2011).

    Article  ADS  Google Scholar 

  21. W.T. Silfvast, Laser Fundamentals. Cambrige Univ. Press, Cambridge (2004).

    Book  Google Scholar 

  22. L. I. Avakyants, I. M.Buzhuinskii, E. I. Koryagina, and V. F. Surkova, Sov. J. Quantum Electron., 8, No. 4, 423 (1978).

    Article  ADS  Google Scholar 

  23. A. A. Shaykin, A. P. Fokin, A. A. Soloviev, et al., Quantum Electron., 44, No. 5, 426 (2014).

    Article  ADS  Google Scholar 

  24. State Standard 11103-64. “Inorganic glass and glass–ceramic materials. Method for determination of heat resistance” [in Russian], Gosstandart SSSR, Moscow (1964).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kuzmin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 2, pp. 158–168, February 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, A.A., Khazanov, E.A. & Shaykin, A.A. Energy Limitations for Neodymium Glass Lasers with Beam Apertures of 45 and 60 mm. Radiophys Quantum El 60, 143–151 (2017). https://doi.org/10.1007/s11141-017-9785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9785-z

Navigation