Skip to main content
Log in

Internal Gravity Waves in the Lower Thermosphere with Linear Temperature Profile: Theory and Experiment

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The problem of internal gravity waves in a medium with linear altitude profile of equilibrium temperature as applied to the experiments related to the creation of artificial periodic irregularities and diagnostics of the neutral atmosphere at the altitudes of the E region is considered. A solution to the initial linearized system of equations for weak disturbances of the thermospheric parameters, such as pressure, density, temperature, and velocity of the medium, is obtained. Among a large array of experimental data on the temperature profiles of the neutral component, the sessions in which the altitude dependence of the equilibrium temperature was well approximated by a linear function were selected. The characteristics of internal gravity waves obtained for such a temperature profile are compared with the results of measuring the atmospheric parameters. Satisfactory agreement between the theoretical and experimental values of the quantities being determined is established, which confirms the validity of the chosen model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Bakhmet’eva, V. V. Belikovich, E. A. Benediktov, et al., Radio Sci ., 33, No. 3, 583 (1998).

    Article  ADS  Google Scholar 

  2. V. V. Belikovich, E. A. Benediktov, A. V. Tolmacheva, and N. V. Bakhmet’eva, Ionospheric Research by Means of Artificial Periodic Irregularities, Copernicus GmbH, Catlenburg–Lindau (2002).

  3. E. A. Benediktov, V. V. Belikovich, N. V. Bakhmet’eva, and A.V. Tolmacheva, Geomagn. Aeron., 7, No. 5, 593 (1997).

  4. N. V. Bakhmet’eva, V. V. Belikovich, G. I. Grigor’ev, and A. V. Tolmacheva, Radiophys. Quantum Electron., 45, No. 3, 211 (2002).

  5. N. V. Bakhmet’eva, G. I. Grigor’ev, and A. V. Tolmacheva, Radiophys. Quantum Electron., 53, No. 11, 623 (2010).

  6. A. V. Tolmacheva, G. I. Grigor’ev, and N. V. Bakhmet’eva, Khim. Fiz ., 32, No. 9, 89 (2013).

  7. A. V. Tolmacheva, N. V. Bakhmetieva, G. I. Grigoriev, and E. E. Kalinina, Adv. Space Res., 56, No. 6, 1185 (2015).

  8. G. I. Grigor’ev, N. V. Bakhmet’eva, A. V. Tolmacheva, and E. E. Kalinina, Radiophys. Quantum Electron., 56, No. 4, 187 (2013).

  9. N. N. Shefov, A. I. Semenov, and V. Yu. Khomich, Radiation of the Upper Atmosphere Radiation as an Indicator of its Structure and Dynamics [in Russian], Geos, Moscow (2006).

  10. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere, Elsevier, New York (1975).

    Google Scholar 

  11. G. I. Grigor’ev, Radiophys. Quantum Electron., 42, No. 1, 1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  12. W. L. Jones, Geophysik III. V. 10/49/5 of the series Handbuch Der Physik. Encyclopedia of Physics, Springer, Berlin, Heidelberg (1976), p. 177.

  13. K. C. Yeh and C. H. Liu, Rev. Geophys. Space Phys., 12, No. 2, 193 (1974).

  14. H. Lamb, Hydrodynamics, Cambridge University Press, New York (1932).

    MATH  Google Scholar 

  15. O. N. Savina, Geomagn. Aeron., 36, No. 2, 218 (1996).

    Google Scholar 

  16. C. J. Mertens, F. S. Schmidlin, R. A. Goldberg, et al., Geoph. Res. Lett ., 31 (2004).

  17. M. L. V. Pitteway and C. O. Hines, Canad. J. Phys., 43, No. 12, 2222 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  18. F. Einaudi and C. O. Hines, Canad. J. Phys., 48, No. 12, 1458 (1970).

  19. V. L. Ginzburg, The Propagation of Electromagnetic Waves in a Plasma, Pergamon Press, Oxford (1964).

    Google Scholar 

  20. N. S. Petrukhin. E. N. Pelinovsky, and E. K. Batsyna, Geomagn. Aeron., 52, No. 6, 814 (2012).

  21. V. V. Belikovich, N. V. Bakhmet’eva, E. E. Kalinina, and A. V. Tolmacheva, Radiophys. Quantum Electron., 49, No. 9, 689 (2006).

  22. G. I. Grigor’ev, N. V. Bakhmet’eva, A. V. Tolmacheva, and E. E. Kalinina, in: Proc. XVII Sci. Conf. Radiophysics, May 13–17, 2013, Nizhny Novgorod [in Russian], N. I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod (2013).

  23. G. I. Grigor’ev and V. Yu. Trakhtengerts, Geomagn. Aeron., 39, No. 6, 758 (1999).

  24. S. D. Zhang, F. Yi, and J.-F. Wang, Ann. Geophysicae, 18, 1316 (2000).

  25. D. Jovanovich, L. Stenflo, and P. K. Shukla, Nonlinear Proc. Geophys., No. 9, 333 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tolmacheva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 02, pp. 113–123, February 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhmet’eva, N.V., Grigor’ev, G.I., Tolmacheva, A.V. et al. Internal Gravity Waves in the Lower Thermosphere with Linear Temperature Profile: Theory and Experiment. Radiophys Quantum El 60, 103–112 (2017). https://doi.org/10.1007/s11141-017-9780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9780-4

Navigation