Skip to main content
Log in

The Accuracy of Measurements of the Spectral-Line Frequencies in the Studies of the Rotational Transitions of the 16O12C32S Molecule in the Millimeter and Submillimeter Wave Ranges

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The absolute error of determining the center frequency of the molecule spectral line during a single measurement, which is obtained by fitting the line shape to the model profile, is usually significantly smaller than the statistical spread in the frequencies of the repeated measurements. We discuss the possible causes of the systematic errors leading to an increase in the uncertainty of measurements of the line-center frequency. For an example of the multiple spectral measurements of the rotational transitions of the 16O12C32S molecule in the millimeter- and submillimeter-wave ranges (with a frequency of up to 522 GHz), by the Lamb-dip method, we determine the absolute error of the performed measurements, which amounts to 0.4 kHz. New precision values of the center frequencies of the rotational transitions of the 16O12C32S molecule and more accurate values of the rotational constants, which are calculated using the measured frequencies, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Levshakov, M.G. Kozlov, and D. Reimers, Astrophys. J., 738, 26 (2011).

    Article  ADS  Google Scholar 

  2. A. V. Lapinov, S. A. Levshakov, M. G.Kozlov, et al., RFBR Bull., 1, No. 73, 111 (2012).

    Google Scholar 

  3. G. Cazzoli, C. Puzzarini, and A.V. Lapinov, Astrophys. J., 592, L95 (2003).

    Article  ADS  Google Scholar 

  4. A.V. Lapinov, G.Yu.Golubiatnikov, V.N.Markov, and A.Guarnieri, Astron. Lett., 33, No. 2, 121 (2007).

    Article  ADS  Google Scholar 

  5. S. A. Levshakov, P. Molaro, A.V. Lapinov, et al., Astron. Astrophys., 512, A44 (2010).

    Article  ADS  Google Scholar 

  6. D. A. Landman, R.Roussel-Dupre, and G.Tanigawa, Astrophys. J., 261, 732 (1982).

    Article  ADS  Google Scholar 

  7. J.-M.Hartmann, C.Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications, Elsevier, Amsterdam (2008).

    Google Scholar 

  8. S. G.Kukolich, D. E.Oates, and J.H. S.Wang, J. Chem. Phys., 61, 4686 (1974).

    Article  ADS  Google Scholar 

  9. V. S. Letokhov and V. P.Chebotaev, Nonlinear Superhigh-Resolution Laser Spectroscopy [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  10. W.Demtroeder, Laser Spectroscopy: Basic Concepts and Instrumentation, Springer, New York (2003).

    Book  Google Scholar 

  11. C. C. Costain, Can. J. Phys., 47, 2431 (1969).

    Article  ADS  Google Scholar 

  12. G.Yu.Golubiatnikov, S.P.Belov, I. I. Leonov, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 599 (2013).

  13. G.Yu.Golubiatnikov, A.V. Lapinov, A.Guarnieri, and R.Kn¨ochel, J. Mol. Spectrosc., 234, 190 (2005).

  14. S. Matton, F. Rohart, R.Bocquet, et al., J. Mol. Spectrosc., 239, 182 (2006).

    Article  ADS  Google Scholar 

  15. M.A. Koshelev, M.Yu.Tretyakov, F. Rohart, and J.-P.Bouanich, Chem. Phys., 136, 124316 (2012).

    ADS  Google Scholar 

  16. A.F. Krupnov, M.Yu.Tretyakov, S.P.Belov, et al., J. Mol. Spectrosc., 280, 110 (2012).

    Article  ADS  Google Scholar 

  17. F. Lewen, R.Gendriesch, I. Pak, et al., Rev. Sci. Instrum., 69, No. 1, 32 (1993).

    Article  ADS  Google Scholar 

  18. V.P.Kochanov, S.P. Belov, and G.Yu.Golubiatnikov, JQSRT, 149, 146 (2014).

    Article  ADS  Google Scholar 

  19. R.Karplus, Phys. Rev., 73, No. 9, 1027 (1948).

    Article  ADS  MATH  Google Scholar 

  20. J.Reid and D. Labrie, Appl. Phys. B, 26, 203 (1981).

    Article  ADS  Google Scholar 

  21. J.P. M. De Vreede, M. P. W. Gillis, and H. A. Dijkerman, J. Mol. Spectrosc., 128, 509 (1988).

    Article  ADS  Google Scholar 

  22. H. M. Pickett, Appl. Opt., 19, 2745 (1980).

    Article  ADS  Google Scholar 

  23. S.P.Belov, M.Yu.Tretyakov, and R.D. Suenram, Astrophys. J., 393, 848 (1992).

    Article  ADS  Google Scholar 

  24. G. Gazzoli and L.Dore, J. Mol. Spectrosc., 141, 49 (1990).

    Article  ADS  Google Scholar 

  25. L. Dore, J. Mol. Spectrosc., 221, 93 (2003).

    Article  ADS  Google Scholar 

  26. C.H.Townes and A. L. Shawlow, Microwave Spectroscopy, McGraw-Hill, New York (1955).

    Google Scholar 

  27. S. G.Kukolich, D. E.Oates, and J.H. S.Wang, J. Chem. Phys., 61, 4686 (1974).

    Article  ADS  Google Scholar 

  28. J.H. S.Wang, D. E.Oates, A.Ben-Reuven, and S.G.Kukolich, J. Chem. Phys., 59, 5268 (1973).

    Article  ADS  Google Scholar 

  29. J.P. M. De Vreede, M. P. W. Gills, and H. A. Dijkerman, J. Mol. Spectrosc., 128, 509 (1988).

    Article  ADS  Google Scholar 

  30. http://spec.jpl.nasa.gov/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu Golubiatnikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 58, No. 8, pp. 691–701, August 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubiatnikov, G.Y., Belov, S.P. & Lapinov, A.V. The Accuracy of Measurements of the Spectral-Line Frequencies in the Studies of the Rotational Transitions of the 16O12C32S Molecule in the Millimeter and Submillimeter Wave Ranges. Radiophys Quantum El 58, 622–631 (2016). https://doi.org/10.1007/s11141-016-9634-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9634-5

Keywords

Navigation