Skip to main content
Log in

Ohmic Losses During Scattering of a Plane Electromagnetic Wave by a Metal Corrugated Surface

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We estimate the ohmic losses in the case of scattering of a plane electromagnetic wave by a metal corrugated surface. Comparative analysis of the losses is performed for different regimes of wave incidence and scattering (self-collimation and different incidence angles), and their dependence on the amplitude and shape of the corrugation profile is studied. The study is based on numerical solving of the integral equation which describes the diffraction of a plane electromagnetic wave by a corrugated interface between two dielectrics. Metal is regarded as a dielectric with purely imaginary dielectric permittivity of a great value which is determined by metal conductivity. The waves with E polarization (i.e., the waves with the electric-field vector directed along the grooves), which are used in echelette gyrotron cavities, are studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Vlasov, E. V. Koposova, A. B. Pavelyev, et al., Pis’ma Zh. Tekh. Fiz., 17, No. 4, 8 (1991).

    Google Scholar 

  2. S. N. Vlasov, E. V. Koposova, A. B. Pavelyev, and V. I. Khizhnyak, Radiophys. Quantum Electron., 39, No. 6, 458 (1996).

    Article  ADS  Google Scholar 

  3. V. I. Belousov, S. N. Vlasov, N. A. Zavol’sky, et al., Radiophys. Quantum Electron., 57, No. 6, 446 (2014).

    Article  ADS  Google Scholar 

  4. W. Manheimer, A. Fliflet, K. S. Germain, et al., Geophys. Res. Lett., 30, No. 3, 1103 (2003).

    Article  ADS  Google Scholar 

  5. J. M. Usoff, “Haystack Ultra-Wideband Satellite Imaging Radar (HUSIR),” in: Proc. IEEE Radar Conf., Boston, 2007, p. 17.

  6. W. Kasparek, M. I. Petelin, V. Erckmann, et al., Fusion Sci. Technol., 52, 281 (2007).

    Google Scholar 

  7. A. Bruschi, V. Erckmann, W. Kasparek, et al., Special Iss. IEEE Trans. Plasma Science on High-Power Microwave Generation, 38, No. 6, 1427 (2010).

    ADS  Google Scholar 

  8. M. Petelin, V. Erckmann, J. L. Hirshfield, et al., IEEE MTT Transactions, 56, No. 5, 835 (2009).

    Article  Google Scholar 

  9. Yu. I. Koshurinov, V. G. Pavel’ev, M. I. Petelin, et al., Tech. Phys. Lett., 31, No. 8, 709 (2005).

    Article  Google Scholar 

  10. V. Erckmann, W. Kasparek, Y. Koshurinov, et al., Fusion Sci. Technol., 55, No. 1, 23 (2009).

    Google Scholar 

  11. D. Yu. Shchegol’kov, M. I. Petelin, and S. V. Kuzikov, Radiotekhnika XXI Veka: Sci.-Tech. Journal (in Russian), No. 4, 52 (2010).

  12. J. L. Hirshfield, P. Kolchin, S. Kuzikov, and M. Petelin, in: Digest of 25th Conf. on Infrared and Millimeter Waves, Beijing, 2000, p. 405.

  13. A. S. Ilyinsky and G. Ya. Slepyan, Oscillations and Waves in Lossy Electrodynamic Systems [in Russian], Moscow State Uni. (1983).

  14. R. Petit, ed., Electromagnetic Theory of Gratings, Springer-Verlag, Berlin, Heidelberg, New York (1980).

    Google Scholar 

  15. L. A. Weinstein and A. I. Sukov, Radiotekh. Élektron., 19, No. 8, 1472 (1984).

    Google Scholar 

  16. S. N. Vlasov and E. V. Koposova, Radiophys. Quantum Electron., 46, Nos. 5–6, 434 (2003).

    Article  ADS  Google Scholar 

  17. S. N. Vlasov, E. V. Koposova, and A. I. Lapshina, Radiophys. Quantum Electron., 49, No. 5, 354 (2006).

    Article  ADS  Google Scholar 

  18. L. A. Weinstein, Electromagnetic waves, Radio i Svyaz, Moscow (1988).

    Google Scholar 

  19. L. D. Landau, E. M. Lifshits, and L. P. Pitayevsky, Electrodynamics of Solids [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  20. B. Z. Katsenelenbaum, High-Frequency Electrodynamics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  21. E. V. Koposova and M. I. Petelin, Izv. Vyssh. Uchebn. Zaved. Radiofiz., 32, No. 9, 1178 (1989).

    Google Scholar 

  22. V. P. Shestopalov, A. A. Kirilenkov, S. A. Masalov, and Yu. K. Sirenko, Resonance Wave Scattering. Vol. 1. Diffraction Gratings [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  23. E. V. Koposova and L. V. Lubyako, Radiophys. Quantum Electron., 57, No. 2, 141 (2014).

    Article  ADS  Google Scholar 

  24. S. N. Vlasov, E. V. Koposova, Yu. I. Koshurinov, et al., Tech. Phys., 57, No. 7, 988 (2012).

    Article  Google Scholar 

  25. L. N. Agapov, S. D. Bogdanov, N. P. Venedictov, et al., Radiophys. Quantum Electron., 56, No. 7, 441 (2013).

    Article  ADS  Google Scholar 

  26. N. A. Zavol’sky, M. I. Petelin, A. S. Sedov, and S. E. Fil’chenkov, in: IX All-Russia Workshop on Radiophysics of Millimeter and Submillimeter Waves [in Russian], Inst. Appl. Phys. RAS (2013), p. 70.

  27. I. E. Botvinnik, V. L. Bratman, G. G. Denisov, and M. M. Ofitserov, Pis’ma Zh. Tekh. Fiz., 10, No. 13, 792 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Koposova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 58, No. 5, pp. 389–400, May 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koposova, E.V. Ohmic Losses During Scattering of a Plane Electromagnetic Wave by a Metal Corrugated Surface. Radiophys Quantum El 58, 350–360 (2015). https://doi.org/10.1007/s11141-015-9609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-015-9609-y

Keywords

Navigation