Skip to main content
Log in

Multifrequency Radiometric Method of the Temperature Profile Measurement in the Active Topsoil

  • Published:
Radiophysics and Quantum Electronics Aims and scope

In this theoretical paper, we propose a method for measuring the temperature profile in the active topsoil of the Arctic tundra using observations of the brightness temperature for two different polarizations of the radiation at frequencies of 1.4, 6.93, 7.3, and 10.7 GHz. A multifrequency physical model of microwave emission of bare soil, a dielectric model of the Arctic tundra soil, and temperature profiles, which were measured in the active topsoil at the Toolik field station on the Alaska North Slope, were used to calculate the observed values of the brightness temperature. Temperature profiles were retrieved from the observed values of the brightness temperature in the approximation of a piecewise-linear profile of topsoil temperature during 2010–2011. Correlation analysis of the temperature profiles measured at the Toolik station and retrieved from the radiometric data has shown that in winter the error of measurement of the soil temperature at depths of 0.6 and 16.0 cm in terms of the variance (correlation coefficient) does not exceed 2.3 (0.98) and 7.2 (0.62°C), respectively. In summer, the error of measurement of the soil temperature using the radiometric method is two times less than in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hachem, C. R. Duguay, and M. Allard, Cryosphere, 6, No. 1, 51 (2012).

    Article  ADS  Google Scholar 

  2. L.A. Jones, J. S. Kimball, K. C. McDonald, et al., IEEE Trans. Geosci. Remote Sens., 45, No. 7, 2004 (2007).

    Article  ADS  Google Scholar 

  3. K. P. Gaikovich, A. N. Reznik, and R. V. Troitsky, Radiophys. Quantum Electron., 32, No. 12, 1082 (1989).

    Article  ADS  Google Scholar 

  4. V. L. Mironov, K. V. Muzalevskiy, and I. V. Savin, IEEE J. Selected Topics Appl. Earth Observat. Remote Sens., 6, No. 3, 1781 (2013).

    Article  Google Scholar 

  5. K. V. Muzalevskiy and V. L. Mironov, Izv. Vyssh. Uchebn. Zaved., Fizika, 56, No. 10/3, 88 (2013).

    Google Scholar 

  6. V. L. Mironov, R. D. De Roo, and I. V. Savin, IEEE Trans. Geosci. Remote Sens., 48, No. 6, 2544 (2010).

    Article  ADS  Google Scholar 

  7. J. R. Wang, P. E. O’Neill, T. J. Jackson, et al., IEEE Trans. Geosci. Remote Sens., GE-21, No. 1, 44 (1983).

    Article  ADS  Google Scholar 

  8. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=NRCS142P2_053712.

  9. P. F. Sullivan, M. Sommerkorn, H. M. Rueth, et al., Oecologia, 153, 643 (2007).

    Article  Google Scholar 

  10. http://www.geobotany.org/library/reports/BarredaJE2006_daltonhwy_20060301.pdf.

  11. J. P. Wigneron, Y. H. Kerr, P. Waldteufel, et al., Remote Sens. Environment, 107, 639 (2007).

    Article  Google Scholar 

  12. M. Schwank, K. Rautiainen, C. Mätzler, et al., Remote Sens. Environment, 154, 180 (2014).

    Article  Google Scholar 

  13. L. M. Brekhovskikh, Waves in the Layered Media, Academic Press, New York (1973).

    Google Scholar 

  14. B. P. Demidovich and I. A. Maron, Numerical Methods of Analysis [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  15. H. Lawrence, J.-P. Wigneron, F. Demontoux, et al., IEEE Trans. Geosci. Remote Sens., 51, No. 7, 4075 (2013).

    Article  ADS  Google Scholar 

  16. G. H. Golub and C. F. van Loan, Matrix Computations. 3rd edition, Johns Hopkins University Press, Baltimore and London (1996).

    MATH  Google Scholar 

  17. V. L. Mironov, L. G. Kosolapova, and S. V. Fomin, IEEE Trans. Geosci. Remote Sens., 47, No. 7, 2059 (2009).

    Article  ADS  Google Scholar 

  18. S. Pinori, R. Crapolicchio, and S. Mecklenburg, in: Microwave Radiometry and Remote Sensing of the Environment, Firenze, 11–14 March 2008, p.1.

  19. M. Kachi, K. Naoki, and M. Hori, in: Int. Geosci. Remote Sens. Symp., Munich, 21–26 July 2013, p. 831.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Muzalevskiy.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 58, No. 05, pp. 376–388, May 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzalevskiy, K.V., Ruzhecka, Z. & Mironov, V.L. Multifrequency Radiometric Method of the Temperature Profile Measurement in the Active Topsoil. Radiophys Quantum El 58, 339–349 (2015). https://doi.org/10.1007/s11141-015-9608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-015-9608-z

Keywords

Navigation