Skip to main content
Log in

Automated Construction of the Basic Dynamic Models of the Atmospheric Photochemical Systems Using the RADM2 Chemical Mechanism as an Example

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The method of automated construction of the basic dynamic models, i.e., mathematically correctly simplified models using a minimum possible set of the dynamic variables, which is necessary for correct description of the spatiotemporal behavior of the atmospheric photochemical systems, is developed. The proposed method is based on numerical search for all the chemical components rapidly evolving near their equilibrium states and sorting out slow families among them, whose characteristic lifetimes turn out to be much longer compared with those of their components. The method is applied to the RADM2 chemical mechanism which is used for simulating air contamination in urbanized regions. This allowed us to find almost thirty fast variables of the above-mentioned system, single out three intersecting slow families and reduce the dimension of the corresponding basic dynamic model more than twice. It is shown that the constructed model well reproduces (both qualitatively and quantitatively) the calculated results, which are obtained using the reference full-scale model, and can be used for both direct simulation of the air quality in the atmospheric boundary layer with allowance for the actual transfer processes and retrieval of information on the tropospheric chemical substances from the available observation data bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Feigin and I. B. Konovalov, J. Geophys. Res., 101, 26023 (1996).

    Article  ADS  Google Scholar 

  2. A. M. Feigin, I. B. Konovalov, and Y. I. Molkov, J. Geophys. Res., 103, 25447 (1998).

    Article  ADS  Google Scholar 

  3. I. B. Konovalov and A. M. Feigin, Nonlin. Proces. Geophys., 7, 87 (2000).

    Article  ADS  Google Scholar 

  4. A. M. Feigin, Izv. Atmos. Okeanic Phys., 38, 513 (2002)

    Google Scholar 

  5. M. Yu. Kulikov, Radiophys. Quantum Electron., 47, No. 9, 662 (2004).

    Article  ADS  Google Scholar 

  6. M. Yu. Kulikov and A. M. Feigin, Bull. Rus. Acad. Sci. Phys., 68, No. 12. 2017 (2004).

    Google Scholar 

  7. M. Yu. Kulikov and A. M. Feigin, Adv. Space Res., 35, No. 12, 1992 (2005).

    Article  ADS  Google Scholar 

  8. M. Yu. Kulikov and A. P. Gashturi, Radiophys. Quantum Electron., 49, No. 12, 949 (2006).

    Article  ADS  Google Scholar 

  9. M. Yu. Kulikov, J. Geophys. Res., 112, D02305 (2007).

  10. M. Yu. Kulikov, O. L. Vadimova, S. K. Ignatov, and A. M. Feigin, Nonlin. Proces. Geophys., 19, 501 (2012).

    Article  ADS  Google Scholar 

  11. M. Yu. Kulikov, A. M. Feigin, and G. R. Sonnemann, Radiophys. Quantum Electron., 49, No. 9, 683 (2006).

    Article  ADS  Google Scholar 

  12. M. Yu. Kulikov, A. M. Feigin, and G. R. Sonnemann, Atm. Chem. Phys., 9, 8199 (2009).

    Article  ADS  Google Scholar 

  13. M. Yu. Kulikov, D. N. Mukhin, and A. M. Feigin, Radiophys. Quantum Electron., 52, No. 9, 618 (2009).

    Article  ADS  Google Scholar 

  14. W. R. Stockwell, F. Kirchner, M. Kuhn, and S. Seefeld, J. Geophys. Res., 102, 25847 (1997).

    Article  ADS  Google Scholar 

  15. M. E. Summers, R. R. Conway, C. R. Englert, et al., Geophys. Res. Lett., 28, 3601 (2001).

    Article  ADS  Google Scholar 

  16. M. H. Stevens, R. R. Conway, C. R. Englert, et al., Geophys. Res. Lett., 28, 4449 (2001).

    Article  ADS  Google Scholar 

  17. B. Langmann, B. Duncan, C. Textor, et al., Atmos. Environ., 43, 107 (2009).

    Article  ADS  Google Scholar 

  18. I. B. Konovalov, M. Beekmann, I. N. Kuznetsova, et al., Atmos. Chem. Physics., 11, 10031 (2011).

    Article  ADS  Google Scholar 

  19. J. Kukkonen, T. Olsson, D. M. Schultz, et al., Atmos. Chem. Phys., 12, 1 (2012).

    Article  ADS  Google Scholar 

  20. http://www.acd.ucar.edu/wrf-chem.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Kulikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 57, No. 7, pp. 531–542, July 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, V.Y., Feigin, A.M. Automated Construction of the Basic Dynamic Models of the Atmospheric Photochemical Systems Using the RADM2 Chemical Mechanism as an Example. Radiophys Quantum El 57, 478–487 (2014). https://doi.org/10.1007/s11141-014-9530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9530-9

Keywords

Navigation