Skip to main content
Log in

Features of Superlong-Distance and Round-the-World Propagation of HF Waves

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of the experimental studies of the features of superlong-distance and round-the-world propagation of the HF waves in the radio lines with different orientation and length, which were obtained in 2012–2014 using a new method of oblique ionospheric sounding. The frequency–time travel intervals of the direct round-the-world signals, their amplitude-frequency and angular-frequency characteristics are determined. The mechanism of propagation and transformation of the round-the-world signals due to the radio-wave refraction by the transverse electron-density gradients in the region of approach of two optimal paths passing via the transmitter and receiver so that each path forms the smallest angle with the terminator. It is shown that the proposed mechanism is in good agreement with the experimentally observed variation of the azimuth of the direct round-the-world signal on the Cyprus–Rostov-on-Don path and on the Alice Springs (Australia)–Rostov-on-Don path in the absence of variation of the direct round-the-world signal azimuth. For the superlong-distance propagation of the HF waves on the Virginia (USA)–Yoshkar-Ola and Puerto Rico–Yoshkar-Ola (the distances about 8000–10000 km) paths, the best propagation conditions are observed when the entire path is in the illuminated ionosphere near the terminator boundary making a small angle of 10°–25° with the terminator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gurevich and E. E. Tsedilina, Long Distance Propagation of HF Radio Waves, Springer–Verlag, Berlin (1985).

    Book  Google Scholar 

  2. V. P. Uryadov, N. V. Ryabova, V. A. Ivanov, and V. V. Shumaev, J. Atm. Terr. Phys., 57, No. 11, 1263 (1995).

    Article  ADS  Google Scholar 

  3. R. B. Fenwick, Round-the-World High Frequency Propagation, Tech. Rep. No. 71 of Stanford Electron. Lab., Stanford Univ. Stanford, California, USA (1963).

  4. S. F. Golyan, Radiophys. Quantum Electron., 18, No. 9, 1014 (1975).

    Article  ADS  Google Scholar 

  5. A. V. Gurevich, L. M. Erukhimov, V. Yu. Kim, et al., Radiophys. Quantum Electron., 18, No. 9, 964 (1975).

    Article  ADS  Google Scholar 

  6. G. G. Vertogradov, V. P. Uryadov, E. G. Vertogradova, and A. A. Ponyatov, Radiophys. Quantum Electron., 53, No. 3, 161 (2010).

    Article  ADS  Google Scholar 

  7. V. A. Bubnov and G. A. Rumyantsev, Radiophys. Quantum Electron., 18, No. 9, 1023 (1975).

    Article  ADS  Google Scholar 

  8. G. G. Vertogradov, V. P. Uryadov, V. G. Vertogradov, and S. V. Kubatko, Patent No. 2399062 RF. Chirp Ionosonde, Publ. on September 10, 2010, Bull. No. 25.

  9. The United States and Australia memorandum of agreement on radar activities. Data fusion project arrangement: Techn. doc. No. 3043. Final report. Space and Naval Warfare Systems Center (1998). 183 p.

  10. P. E. Pace, Detecting and classifying low probability of intercept radar. Artech House Inc. (2009).

  11. The Akrotiri military antennae health survey: Final report. Department of Medical Physics and Oncology University of Bristol (2005).

  12. V. P. Uryadov, G. G. Vertogradov, V. G. Vertogradov, et al., Radiophys. Quantum Electron., 52, No. 4, 241 (2009).

    Article  ADS  Google Scholar 

  13. G. G. Vertogradov, V. P. Uryadov, V. G. Vertogradov, et al., Élektromag. Volny Elektron. Syst., 15, No. 5, 22 (2010).

    Google Scholar 

  14. A. A. Kolchev, V. V. Shumaev, and A. O. Shchiryi, Izv. Vyssh. Uchebn. Zaved., Priborostr., 51, No. 12, 73 (2008).

    Google Scholar 

  15. A. A. Kolchev, V. V. Shumaev, A. G. Chernov, et al., Proc. XVI Int. Sci. Techn. Conf. “Radar, Navigation, Communicat.” (RLNC’2010), Voronezh (2010), vol. 2, p. 797.

  16. sec.noaa.gov.

  17. G. G. Vertogradov, V. P. Uryadov, E. G. Vertogradova, et al., Radiophys. Quantum Electron., 56, No. 5, 259 (2013).

    Article  ADS  Google Scholar 

  18. V. I. Sazhin and M. V. Tinin, Radiophys. Quantum Electron., 18, No. 9, 1028 (1975).

    Article  ADS  Google Scholar 

  19. A. A. Ponyatov and V. P. Uryadov, Computer Simulation of Ionospheric Propagation of HF waves, Preprint No. 428, NIRFI, Nizhny Novgorod (1996).

  20. M. V. Tinin, Issled. Geomagn. A´eron. Fiz. Soln. [in Russian], Nauka, Moscow (1973), No. 29, p. 157.

  21. M. Ichinose, Y. Kuratani, and I. Yamazaki, J. Radio Res. Lab., 32, No. 136, 61 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Uryadov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 57, No. 6, pp. 464–483, June 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponyatov, A.A., Vertogradov, G.G., Uryadov, V.P. et al. Features of Superlong-Distance and Round-the-World Propagation of HF Waves. Radiophys Quantum El 57, 417–434 (2014). https://doi.org/10.1007/s11141-014-9524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9524-7

Keywords

Navigation