Skip to main content
Log in

Amplitude-Dependent Internal Friction and Harmonic Generation in Media with Hysteresis Nonlinearity and Linear Dissipation

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Based on generalization and integration of models for dislocation mechanisms of the hysteresis nonlinearity, we propose a hysteresis equation of state of polycrystalline solids with saturated amplitude-dependent losses. Using the perturbation method, we study, both theoretically and numerically, the nonlinear effects during propagation of acoustic waves in the media with hysteresis nonlinearity and linear viscous dissipation. Nonlinear damping rate and propagation velocity of the wave at the fundamental frequency, as well as regularities for the amplitudes and phase velocities at its second and third harmonics, are determined. It is shown that the media described by such hysteresis equations of state have a nonlinear dispersion, which leads to a nonmonotonic rise and amplitude beats of the higher harmonics as the wave amplitude increases at the fundamental frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.K. Zarembo and V. A.Krasil’nikov, Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  2. L.K. Zarembo and V. A.Krasil’nikov, Sov. Fiz. Usp., 13, 778 (1971).

    Article  Google Scholar 

  3. O.V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, Consultants Bureau, New York (1977).

    Book  MATH  Google Scholar 

  4. M. B. Vinogradova, O. V.Rudenko, and A. P. Sukhorukov, The Wave Theory [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  5. L.D. Landau and E. M. Lifshitz, Fluid Mechanics, Butterworth–Heinemann, Oxford (1987).

    MATH  Google Scholar 

  6. S. N.Gurbatov, O.V.Rudenko, and A. I. Saichev, Waves and Structures in Nonlinear Nondispersive Media: General Theory and Appications to Nonlinear Acoustics, Springer (2012).

  7. M. A. Isakovich, General Acoustics, Nauka, Moscow (1973).

    Google Scholar 

  8. V. E. Nazarov, L. A.Ostrovsky, I. A. Soustova, and A. M. Sutin, Phys. Earth Planet. Interiors, 50, No. 1, 65 (1988).

    Article  ADS  Google Scholar 

  9. R.A.Guyer and P.A. Johnson, Phys. Today, No. 4, 30 (1999).

  10. R.A.Guyer and P.A. Johnson, Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media Including Rocks and Soil, Wiley, Weinheim (2009).

    Book  Google Scholar 

  11. V. E. Nazarov and A. M. Sutin, Akust. Zh., 35, No. 4, 711 (1989).

    Google Scholar 

  12. V. E. Nazarov, A. V. Radostin, L.A.Ostrovsky, and I. A. Soustova, Acoust. Phys., 49, No. 3, 344 (2003).

    Article  ADS  Google Scholar 

  13. T. A.Read, Phys. Rev., 58, 371 (1940).

    Article  ADS  Google Scholar 

  14. A. Granato and K. Lucke, J. Appl. Phys., 27, No. 5, 583 (1956).

    Article  MATH  ADS  Google Scholar 

  15. L. G. Merkulov, ed., Ultrasonic Methods of Dislocation Studies [in Russian], Inostrannaya Literatura, Moscow (1963).

    Google Scholar 

  16. D. Niblett and J.Wilks, Usp. Fiz. Nauk, 80, No. 1, 125 (1963).

    Google Scholar 

  17. W.P. Mason, ed., Physical Acoustics, Vol. 4, Part A, Applications to Quantum and Solid State Physics, Elsevier (1966).

  18. W.P. Mason, ed., Physical Acoustics, Vol. 3, Part A, The Influence of Defects on the Properties of Solids, Academic Press, New York (1966).

    Google Scholar 

  19. S. Asano, J. Phys. Soc. Jap., 29, No. 4, 952 (1970).

    Article  ADS  Google Scholar 

  20. A. B. Levedev, Fiz. Tverd. Tela, 35, No. 9, 2304 (1993).

    Google Scholar 

  21. A. B. Levedev, Phys. Solid State, 41, No. 7, 1105 (1999).

    Article  ADS  Google Scholar 

  22. J. S. Koehler, Imperfections in Nearly Perfect Crystals, Wiley, New York (1952), p. 197.

    Google Scholar 

  23. A. S. Novick, Phys. Rev., 80, No. 2, 249 (1950).

    Article  ADS  Google Scholar 

  24. S.Takahachi, J. Phys. Soc. Jap., 11, No. 12, 1253 (1956).

    Article  ADS  Google Scholar 

  25. D. N. Beshers, J. Appl. Phys., 30, No. 2, 252 (1959).

    Article  ADS  Google Scholar 

  26. J.C. Swartz and J.Weertman, J. Appl. Phys., 32, No. 10 1860 (1961).

    Article  ADS  Google Scholar 

  27. D. Gelli, J. Appl. Phys., 33, No. 4, 1547 (1962).

    Article  ADS  Google Scholar 

  28. V. E. Nazarov, Phys. Metals Metallography, 71, No. 3, 171 (1991).

    Google Scholar 

  29. V. E. Nazarov, Acoust. Phys., 46, No. 2, 186 (2000).

    Article  ADS  Google Scholar 

  30. V. E. Nazarov and A. B.Kolpakov, J. Acoust. Soc. Am., 107, No. 4, 1915 (2000).

    Article  ADS  Google Scholar 

  31. V. E. Nazarov, Phys. Metals Metallography, 88, No. 3, 390 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Nazarov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 10, pp. 762–773, October 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, V.E., Kiyashko, S.B. Amplitude-Dependent Internal Friction and Harmonic Generation in Media with Hysteresis Nonlinearity and Linear Dissipation. Radiophys Quantum El 56, 686–696 (2014). https://doi.org/10.1007/s11141-014-9473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9473-1

Keywords

Navigation