Advertisement

Radiophysics and Quantum Electronics

, Volume 56, Issue 8–9, pp 497–507 | Cite as

Experimental Study of the Pulsed Terahertz Gyrotron with Record-Breaking Power and Efficiency Parameters

  • M. Yu. Glyavin
  • A. G. Luchinin
  • A. A. Bogdashov
  • V. N. Manuilov
  • M. V. Morozkin
  • Yu. Rodin
  • G. G. Denisov
  • D. Kashin
  • G. Rogers
  • C. A. Romero-Talamas
  • R. Pu
  • A. G. Shkvarunetz
  • G. S. Nusinovich
Article

We describe the results of studying experimentally a high-power (hundreds of kilowatts) pulsed (pulse duration of about 30 μs) subterahertz gyrotron with the generation frequency corresponding to one of the atmosphere transparency windows. The gyrotron with an operating frequency of 0.67 THz, a power of more than 200 kW and an efficiency of 20–25% was used in the experiments on ignition of a localized discharge in a plasma. The paper presents the data about measurements of the temperature field of the emitter, calorimetric measurements of the power and efficiency of the gyrotron, and the design of the quasioptical converter of radiation to a narrow wave beam. The first experiments with the terahertz discharge in a focused wave beam of the gyrotron are briefly described.

Keywords

Terahertz Radiation Ohmic Loss Microwave Discharge Velocity Spread Pitch Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. R. Mueller, Industrial Physicist, 27, 29 (2003).Google Scholar
  2. 2.
    P. H. Siegel, IEEE Trans. Microwave Theory Tech., 50, 910 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    N. I. Zaitsev, T. B. Pankratova, M. I. Petelina, and V. A. Flyagin, Radiotekh. Élektron., 19, No. 5, 1056 (1974).Google Scholar
  4. 4.
    G. S. Nusinovich, Introduction to the Physics of Gyrotrons, Johns Hopkins Univ. Press, Baltimore (2004).Google Scholar
  5. 5.
    J. H. Booske, Phys. Plasmas, 15, No. 5, 055502 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    Z. Huang and K.-J. Kim, Phys. Rev. ST Accel. Beams, 10, 034801 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    I. B. Bott, Proc. IEEE, 52, No. 3, 330 (1964).CrossRefGoogle Scholar
  8. 8.
    V. A. Flyagin, A. G. Luchinin, and G. S. Nusinovich, Int. J. Infrared Millimeter Waves, 4, No. 4, 629 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    M. Yu. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, Phys. Rev. Lett., 100, 015101 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    T. Idehara, H. Tsuchiya, O. Watanabe, et al., Int. J. Infrared Millimeter Waves, 27, No. 3, 319 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    V. L. Bratman, Yu. K. Kalynov, and V. N. Manuilov, Phys. Rev. Lett., 102, 245101 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    V. Bratman, M. Glyavin, T. Idehara, et al., IEEE Trans. Plasma Sci.,37, 36 (2009).Google Scholar
  13. 13.
    V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys., 108, 063304 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Sidorov, V. L. Bratman, M. Yu. Glyavin, et al., in: IEEE Int. Conf. Pulsed Plasma and Plasma Sci., San Francisco, California, USA, June 16–21, 2013, art. no. 10 E-4.Google Scholar
  15. 15.
    M. Yu. Glyavin, A. G. Luchinin, V. N. Manuilov, et al., Radiophys. Quantum Electron., 54, Nos. 8–9, 666 (2011).Google Scholar
  16. 16.
    R. Pu, G. S. Nusinovich, O. V. Sinitsyn, and T. M. Antonsen, Phys. Plasmas, 18, 023107 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    M. Yu. Glyavin, A. G. Luchinin, G. S. Nusinovich, et al., Appl. Phys. Lett., 101, 153503 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamas, and V. L. Granatstein, J. Appl. Phys., 109, 083303 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    G. S. Nusinovich, P. Sprangle, V. E. Semenov, et al., J. Appl. Phys., 111, 124912 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    K. Sakamoto, Fusion Sci. Technol., 52, 145 (2007).Google Scholar
  21. 21.
    S. N. Vlasov, L. I. Zagryadskaya, and M. I.Petelin, Radio Eng. Electron. Phys., 20, 14 (1975).ADSGoogle Scholar
  22. 22.
    M. A. Moiseev, L. L. Nemirovskaya, V. E. Zapevalov, and N. A. Zavolsky, Int. J. Infrared Millimeter Waves, 18, No. 11, 2117 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    M. Botton, T. M. Antonsen, B. Levush, et al., IEEE Trans. Plasma Sci., 26, 882 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    W. Kasparek and G. Müller, Int. J. Electron., 64, 5 (1988).CrossRefGoogle Scholar
  25. 25.
    A. Luchinin, and G. Nusinovich, in: Gyrotrons, Inst. Appl. Phys., Gorky (1989), p. 64.Google Scholar
  26. 26.
    M. Yu. Glyavin, S. V. Golubev, V. G. Zorin, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 622 (2013).Google Scholar
  27. 27.
    V. I. Belousov, M. M. Oficerov, V. Yu. Plachotnik, and Yu. V. Rodin, J. Comm. Tech. Electr., 3, 93 (1996).Google Scholar
  28. 28.
  29. 29.
    Y. -S. Jin, G. -J. Kim, and S. -G. Jeon, J. Korean Phys. Soc., 49, 513 (2006).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. Yu. Glyavin
    • 1
    • 4
  • A. G. Luchinin
    • 1
    • 4
  • A. A. Bogdashov
    • 1
  • V. N. Manuilov
    • 1
    • 2
  • M. V. Morozkin
    • 1
  • Yu. Rodin
    • 1
  • G. G. Denisov
    • 1
    • 4
  • D. Kashin
    • 3
  • G. Rogers
    • 3
  • C. A. Romero-Talamas
    • 3
  • R. Pu
    • 3
  • A. G. Shkvarunetz
    • 3
  • G. S. Nusinovich
    • 3
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  3. 3.Center for Applied ElectromagneticsUniversity of MarylandCollege ParkUSA
  4. 4.GYCOM Ltd.Nizhny NovgorodRussia

Personalised recommendations