Skip to main content
Log in

Features of the Wave Disturbances in the Ionosphere During Periodic Heating of the Plasma by the “Sura” Radiation

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of observations of the Doppler-spectrum and Doppler-frequency shift variations of the ionosphere-reflected radio signals from a high-frequency vertical-sounding radar when the ionospheric plasma is affected by the high-power periodic radiation of the “Sura” heating facility. The distance from the heater to the Doppler radar is about 960 km. It has been confirmed that high-power radiation leads to the generation (amplification) of wave disturbances in the parameter range of internal gravity waves (periods 10–30 min and velocities 360–460 m/s). Soliton-like wave packets with a period of 10–15 min, a duration of 20–30 min, and a relative amplitude of electron-density perturbations from 3 to 8 % have been detected. The same parameter for other wave disturbances was 1–3 %. It has been confirmed that the generation efficiency of periodic disturbances in the parameter range of internal gravity waves depends significantly on the heater operation regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Grigor’ev, Radiophys. Quantum Electron., 18. No. 12, 1335 (1975).

    Article  ADS  Google Scholar 

  2. G. I. Grigor’ev and V. Yu. Trakhtengerts, Geomagn. Aeron., 39, No. 6, 758 (1999).

    Google Scholar 

  3. A. N. Karashtin, N. A. Mityakov, V. O. Rapoport, and V. Yu. Trakhtengerts, Radiophys. Quantum Electron., 20, No. 5, 540 (1977).

    Article  ADS  Google Scholar 

  4. K. P. Garmash, L. F. Chernogor, and A. B. Shvartsburg, Komp. Opt ., No. 6, 62 (1989).

  5. O. V.Pakhomova and L. F. Chernogor, Vestnik Kharkov Univ., Radiofiz. Élektron., No. 318, 29 (1988).

  6. L. F. Chernogor, Geomagn. Aéron., 29, No. 3, 513 (1989).

    ADS  Google Scholar 

  7. V. A. Misyura, O. V. Pakhomova, and L. F. Chernogor, Kosmich. Nauka Tekh., No. 4, 72 (1989).

  8. K. P. Garmash, A. I. Gritchin, A. A. Gubarev, et al., Proc. of Radioelectron. Res. Inst. [in Russian], Radio i Svyaz’, Moscow (1989), No. 9, p. 57.

    Google Scholar 

  9. O. V. Pakhomova and L. F. Chernogor, Kosmich. Nauka Tekh., No. 5, 71 (1990).

  10. L. S. Kostrov and L. F. Chernogor, Geomagn. Aéron., 30, No. 1, 159 (1990).

    ADS  Google Scholar 

  11. K. P. Garmash and L. F. Chernogor, Usp. Sovremen. Radioélektron., No. 6, 17 (1998).

  12. K. P. Garmash and L. F. Chernogor, Élektromagn. Yavlen., 1, No. 1, 90 (1998).

    Google Scholar 

  13. L. F. Chernogor, Radiofiz. Radioastron., 14, No. 4, 377 (2009).

    Google Scholar 

  14. V. P. Burmaka, I. F. Domnin, V. P. Uryadov, and L. F. Chernogor, Radiophys. Quantum Electron., 52, No. 11, 774 (2009).

    Article  Google Scholar 

  15. L. F. Chernogor, V. L. Frolov, G. P. Komrakov, and V. F. Pushin, Radiophys. Quantum Electron., 54, No. 2, 75 (2011).

    Article  ADS  Google Scholar 

  16. L. F. Chernogor and V. L. Frolov, Radiophys. Quantum Electron., 55, Nos. 1–2, 13 (2012).

    Article  ADS  Google Scholar 

  17. I. F. Domnin, S.V. Panasenko, V. P. Uryadov, and L. F. Chernogor, Radiophys. Quantum Electron., 55, No. 4, 253 (2012).

    Article  ADS  Google Scholar 

  18. L. F. Chernogor, V. L. Frolov, and V. F. Pushin, Radiophys. Quantum Electron., 55, No. 5, 296 (2012).

    Article  ADS  Google Scholar 

  19. E. Mishin, E. Sutton, G. Milikh, et al., Geophys. Res. Lett ., 39, L11101 (2012).

    Article  ADS  Google Scholar 

  20. L. F. Chernogor, Radiofiz. Radioastron., 17, No. 3, 240 (2012).

    Google Scholar 

  21. L. F. Chernogor // Geomagn. Aeron., 48, No. 5, 652 (2008).

    Article  ADS  Google Scholar 

  22. V. P. Burmaka, V. I. Taran, and L. F. Chernogor, Geomagn. Aeron., 46, No. 2, 183 (2006).

    Article  ADS  Google Scholar 

  23. V. P. Burmaka, V. I. Taran, and L. F. Chernogor, Geomagn. Aeron., 46, No. 2, 199 (2006).

    Article  ADS  Google Scholar 

  24. O. N. Savina and L. M. Erukhimov, Geomagn. Aéron., 21, No. 4, 679 (1981).

    ADS  Google Scholar 

  25. G. F. Deminova, M. G. Deminov, L. M. Erukhimov, et al., Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana, 22, No. 2, 211 (1982).

    Google Scholar 

  26. K. D. Danov, Geomagn. Aéron., 29, No. 2, 343 (1989).

    ADS  Google Scholar 

  27. V. F. Pushin and L. F. Chernogor, Electromag. Volny Élektron. Sist., 12, No. 11, 33 (2007).

    Google Scholar 

  28. L. F. Chernogor, On the Nonlinearity in the Nature and Science [in Russian], V. N. Karazin National Univ. of Kharkov, Kharkov (2008).

    Google Scholar 

  29. L. A. Ostrovsky and A. I. Potapov, Introduction to the Theory of Modulated Waves [in Russian], Fizmatlit, Moscow (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Chernogor.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, No. 5, pp. 307–321, May 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernogor, L.F., Frolov, V.L. Features of the Wave Disturbances in the Ionosphere During Periodic Heating of the Plasma by the “Sura” Radiation. Radiophys Quantum El 56, 276–289 (2013). https://doi.org/10.1007/s11141-013-9432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-013-9432-2

Keywords

Navigation