Skip to main content
Log in

Revealing mutual influence of oscillatory systems from the observation data

  • Published:
Radiophysics and Quantum Electronics Aims and scope

In different fields of physical research, we often meet the problem of distinguishing between bidirectional and unidirectional couplings of oscillatory systems, i.e., mutual influence and one-way influence, on the basis of the observed time series. In this work, it is shown that a widely used approach, based on the calculation of prediction errors of empirical models (Granger causality), may give spurious conclusions on bidirectional coupling if a sampling interval exceeds a certain intrinsic time scale of the studied systems. Taking this effect into account, we propose and illustrate by standard examples a statistical test which allows one to reveal bidirectional coupling with specified confidence probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bezruchko, V. Ponomarenko, M. G. Rosenblum, and A. S. Pikovsky, Chaos, 13, No. 1, 179 (2003).

    Article  ADS  Google Scholar 

  2. Y. C. Hung and C.K. Hu, Phys. Rev. Lett., 101, No. 24, 244102 (2008).

    Article  ADS  Google Scholar 

  3. B. Kralemann, L. Cimponeriu, M. Rosenblum, et al., Phys. Rev. E, 76, No. 5, 055201(R) (2007).

  4. W. Wang, B.T. Anderson, R.K. Kaufmann, and R.B. Myneni, J. Climate, 17, No. 24, 4752 (2004).

    Article  ADS  Google Scholar 

  5. I. I. Mokhov and D.A. Smirnov, Izvestiya, Atmos. Ocean. Phys., 44, No. 3, 263 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  6. I. I. Mokhov and D.A. Smirnov, Doklady Earth Sci., 427, No. 5, 798 (2009).

    Article  ADS  Google Scholar 

  7. E. Pereda, R. Quian Quiroga, and J. Bhattacharya, Progr. Neurobiol., 77, No. 10, 1 (2005).

    Article  Google Scholar 

  8. J. Brea, D. F. Russell, and A. B. Neiman, Chaos, 16, No. 2, 026111 (2006).

    Article  ADS  Google Scholar 

  9. B.P. Bezruchko, V. I. Ponomarenko, M. D. Prokhorov, et al., Uspekhi—Physics, 51, No. 3, 304 (2008).

    Google Scholar 

  10. D. Smirnov, T. Barnikol, U. Barnikol, et al., Europhys. Lett., 83, No. 2, 20003 (2008).

    Article  ADS  Google Scholar 

  11. M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. E, 64, No. 4, 045202(R) (2001).

  12. D. A. Smirnov and B.P. Bezruchko, Phys. Rev. E, 68, No. 4, 046209 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  13. D. A. Smirnov, J. Commun. Technol. Electron., 51, No. 5, 534 (2006).

    Article  Google Scholar 

  14. D. A. Smirnov, E. V. Sidak, and B. P. Bezruchko, Tech. Phys. Lett., 37, No. 1, 30 (2011).

    Article  ADS  Google Scholar 

  15. C. W. J. Granger, Econometrica, 37, No. 3, 424 (1969).

    Article  MathSciNet  Google Scholar 

  16. C. W. J. Granger, J. Econ. Dyn. Control, 2, No. 6, 329 (1980).

    Article  MathSciNet  Google Scholar 

  17. C. A. Sims, Econometrica, 39, No. 3, 545 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Marcellino, J. Busin. Econom. Stat., 17, No. 1, 129 (1999).

    MathSciNet  Google Scholar 

  19. E. Renault, K. Sekkat, and A. Szafarz, J. Emp. Fin., 5, No. 1, 47 (1998).

    Article  Google Scholar 

  20. G. Box and G. Jenkins, Time-Series Analysis: Forecasting and Control, Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  21. G. A. F. Seber and A. J. Lee, Linear Regression Analysis, Wiley, Hoboken, N. J. (2003).

    Book  MATH  Google Scholar 

  22. N. N. Nikitin and V.D.Razevig, USSR Comput. Math. Math. Phys., 18, No. 1, 102 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Timmer, M. Lauk, W. Pfleger, and G. Deuschl, Biol. Cybern., 78, No. 1, 349 (1998).

    Article  MATH  Google Scholar 

  24. S.P.Kuznetsov, Radiophys. Quantum Electron., 25, No. 12, 996 (1982).

    Article  ADS  Google Scholar 

  25. S.P. Kuznetsov, Radiophys. Quantum Electron., 28, No. 8, 681 (1985).

    Article  ADS  Google Scholar 

  26. K. Ikeda, Opt. Commun., 30, No. 2, 257 (1979).

    Article  ADS  Google Scholar 

  27. R. Lang and K. Kobayashi, IEEE J. Quantum Electron., 16, No. 3, 347 (1980).

    Article  ADS  Google Scholar 

  28. D. A. Smirnov and B.P. Bezruchko, Europhys. Lett., 100, No. 1, 10005 (2012).

    Article  Google Scholar 

  29. Ya.A. Molkov, D. N. Mukhin, E.M. Loskutov, et al., Phys. Rev. E, 80, No. 4, 046207 (2009).

    Article  ADS  Google Scholar 

  30. Ya. A. Molkov, E. M. Loskutov, D. N. Mukhin, and A.M. Feigin, Phys. Rev. E, 85, No. 3, 036216 (2012).

  31. I. Vlachos and D. Kugiumtzis, Phys. Rev. E, 82, No. 1, 016207 (2010).

    Article  ADS  Google Scholar 

  32. L. Faes, G. Nollo, and A. Porta, Phys. Rev. E, 83, No. 5, 051112 (2011).

    Article  ADS  Google Scholar 

  33. T. Schreiber and A. Schmitz, Physica D, 142, Nos. 3–4, 346 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. K. Dolan and A. Neiman, Phys. Rev. E, 65, No. 2, 026108 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Smirnov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 55, Nos. 10–11, pp. 736–750, October–November 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, D.A., Bezruchko, B.P. Revealing mutual influence of oscillatory systems from the observation data. Radiophys Quantum El 55, 662–675 (2013). https://doi.org/10.1007/s11141-013-9404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-013-9404-6

Keywords

Navigation