Skip to main content
Log in

Surface Plasmon Propagation on a Film with Subwavelength Holes in the Terahertz Frequency Range

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We experimentally study the propagation of surface plasmons on a metal foil containing subwavelength structures in the terahertz frequency range. Additional measurements of the transmission spectra through the same structures allowed us to determine the effective dielectric function of the structured layer for the two directions of wave propagation, along and across the film surface. It was shown for the first time that even a thin two-dimensional film of metal with slits may reduce the surface plasmon velocity and enhance the spatial localization of the plasmon field at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Ebbesen, J. Lezec, H. F. Ghaemi, et al., Nature, 391, 667 (1998).

    Article  ADS  Google Scholar 

  2. V. M. Agranovich and D. L. Mills, eds., Surface Polaritons, Amsterdam (1982), p. 30.

  3. S. A. Maier, in: Plasmonics: Fundamentals and Applications, Springer Science+Business Media LLC (2007), p. 89.

  4. M. Nazarov and J.-L.Coutaz, J. Infrared MM THz Waves, 31, 543 (2011).

    Google Scholar 

  5. W. Zhu, A. Agrawal, and A. Nahata, Opt. Express, 16, 6216 (2008).

    Article  ADS  Google Scholar 

  6. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, Opt. Commun., 277, 33 (2007).

    Article  ADS  Google Scholar 

  7. M. Gong, T.-I. Jeon, and D. Grischkowsky, Opt. Express, 17, 17088 (2009).

    Article  ADS  Google Scholar 

  8. M. M. Nazarov, A. P. Shkurinov, A. Y. Ryabov, and E. A. Bezus, IRMMW-THz2010: Technical Digest on CD, Art. No. We-P. 47.

  9. C. R. Williams, S. R. Andews, S. A. Maier, et al., Nature Photonics, 2, 175 (2008).

    Article  ADS  Google Scholar 

  10. K. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science, 305, 847 (2004).

    Article  ADS  Google Scholar 

  11. A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, Phys. Rev. Lett., 101, Art. No. 103902 (2008).

  12. D. Qu, D. Grischkowsky and W. Zhang, Opt. Lett., 29, 896 (2004).

    Article  ADS  Google Scholar 

  13. A. K. Azad, H.-T. Chen, A. J. Taylor, and J. F. O’Hara, Proc. SPIE, 7214, Art. No. 72140Z 1-14 (2009).

  14. M. A.Ordal, L. L. Long, R. J. Bell, et al., Appl. Opt., 22, 1099 (1983).

    Article  ADS  Google Scholar 

  15. V. V. Gerasimov, B. A. Knyazev, A. K. Nikitin, and G. N. Zhizhin, Appl. Phys. Lett., 98, Art. No. 171912 (2011).

  16. M. Nazarov, F. Garet, D. Armand, et al., Comptes Rendus Physique, 9, 232 (2008).

    Article  ADS  Google Scholar 

  17. Y. Minowa, T. Fujii, M. Nagai, et al., Opt. Express, 16, 4785 (2008).

    Article  ADS  Google Scholar 

  18. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, J. Opt. A: Pure Appl. Opt., 7, S97 (2005).

    Article  ADS  Google Scholar 

  19. F. Zhan, F. Qiaoqiang, J. D.Yujie, and F. J. Bartoli, IEEE J. Selected Topics in Quantum Electronics, 14, 486 (2008).

    Article  Google Scholar 

  20. E. Hendry, A. P. Hibbins, and J. R. Sambles, Phys. Rev. B, 78, Art. No. 235426 (2008).

  21. D. W. Porterfield, J. L. Hesler, R. Densing, et al., Appl. Opt., 33, 6052 (1992).

    Google Scholar 

  22. A. Agrawal, Z. V. Vardeny, and A. Nahata, Opt. Express, 16, 9601 (2008).

    Article  ADS  Google Scholar 

  23. J.-B. Masson, A. Podzorov, and G. Gallot, Opt. Express, 17, 15280 (2009).

    Article  ADS  Google Scholar 

  24. J. W. Lee, M. A. Seo, D. H. Kang, et al., Phys. Rev. Lett., 99, Art. No. 137401 (2007).

  25. M. M. Nazarov, A. Yu. Ryabov, A. P. Shkurinov, et al., J. Opt. Technol., 79, 251 (2012).

    Article  Google Scholar 

  26. M. M. Nazarov, A. Yu. Ryabov, and A. A. Angeluts, Izv. Vyssh. Uchebn. Zaved., Fiz., 55, No. 8/3, 11 (2012).

    Google Scholar 

  27. M. Born abd F. Wolf, Principles of Optics, Pergamon Press, Oxford (1970).

    Google Scholar 

  28. A. Alekseev, Pech. Montazh, 2, 14 (2010).

    Google Scholar 

  29. V. I. Mukhin, A. N. Khodan, M. M. Nazarov, and A. P. Shkurinov, Radiophys. Quantum Electron., 54, Nos. 8–9, 591 (2011).

    ADS  Google Scholar 

  30. M. M. Nazarov and A. P. Shkurinov, Radiophys. Quantum Electron., 52, No. 8, 536 (2009).

    Article  ADS  Google Scholar 

  31. M. M. Nazarov, E. A. Bezus, and A. P. Shkurinov, Laser Phys., (2013) [in press].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Nazarov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 55, Nos. 10–11, pp. 704–719, October–November 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angeluts, A.A., Nazarov, M.M., Ryabov, A.Y. et al. Surface Plasmon Propagation on a Film with Subwavelength Holes in the Terahertz Frequency Range. Radiophys Quantum El 55, 634–647 (2013). https://doi.org/10.1007/s11141-013-9401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-013-9401-9

Keywords

Navigation