Skip to main content
Log in

Studying integrated silicon-lens antennas for radio communication systems operated in the 60 GHz frequency band

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider the development of an integrated lens antenna for LAN radio communication systems operated in the 60 GHz frequency band. The antenna is an extended hemispherical silicon lens. On its flat surface, a microstrip antenna element is located. The use of silicon, which has a dielectric permittivity ε = 11.7, as the lens material ensures the maximum range of scanning angles for the minimum axial size of the lens. The approximate analytical formulas, which are used for initial calculations of the lens parameters, allow one to evaluate the basic parameters of the lens antenna integrated with the microstrip antenna element. For further optimizing the parameters of the lens and the antenna element, 3D simulation of the electromagnetic-field distribution was performed. Based on its results, we have developed and manufactured extended hemispherical silicon lenses, which had radii of 6 and 12 mm. The planar microstrip antenna element was manufactured by the low temperature co-fired ceramics (LTCC) technology. The results of simulation and experimental studies of the manufactured prototypes demonstrate that the developed lens antennas has directivities of 17.6 and 23.1 dBi for lenses with radii of 6 and 12 mm, respectively. In this case, the maximum beam deflection angle is achieved, which is equal to 55°, while the permissible decrease in the directivity is no more than 6 dBi compared with the case of a non-deflected beam. The obtained results show that the developed integrated lens antennas can find applications in high-speed radio communication systems operated in the millimeter-wave range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEEE P802.11a/D9.0. Draft Standard for Information Technology – Telecommunications and Information Exchange Between Systems – Local and Metropolitan Area Networks – Specific Requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band, IEEE 802.11 Committee (2012).

  2. A. Maltsev, R. Maslennikov, A. Sevastyanov, et al., IEEE J. Selected Areas Commun., 27, No. 8, 1488 (2009).

    Article  Google Scholar 

  3. S. Alamouti, A. Maltsev, N. Chistyakov, and A. Artemenko, USA Patent No. 7683844, IPC H01Q 19/06, “Mm-wave scanning antenna,” Filed 16.05.2007, Publ. 23.03.2010, IPC 343/700.

  4. D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, IEEE Trans. Microwave Theory Tech., 41, 1738 (1993).

    Article  ADS  Google Scholar 

  5. D. Pasqualini and S. Maci, IEEE Trans. Antennas Propagat., 52, No. 3, 840 (2004).

    Article  ADS  Google Scholar 

  6. T. H. Buttgenbach, IEEE Trans. Microwave Theory Tech., 41, 1750 (1991).

    Article  ADS  Google Scholar 

  7. J. R. Costa, E.B. Lima, and C. A. Fernandes, IEEE Trans. Antennas Propagat., 57, No. 10, 2926 (2009).

    Article  ADS  Google Scholar 

  8. J. Ala-Laurinaho, A. Karttunen, J. Saily, et al., in: Proc. 4th IEEE European Conf. Antennas Propagat., Barcelona, 2010, p.1.

  9. G. Godi, R. Sauleau, and D. Thouroude, IEEE Trans. Antennas Propagat., 53, No. 4, 1278 (2005).

    Article  ADS  Google Scholar 

  10. D. F. Filipovic, G. P. Gauthier, S. Raman, and G. M. Rebeiz, IEEE Trans. Antennas Propagat., 45, No. 5, 760 (1997).

    Article  ADS  Google Scholar 

  11. W. B. Dou and Z. L. Sun, Int. J. Infrared Millimeter Waves, 16, No. 1L, 1993 (1995).

    Article  ADS  Google Scholar 

  12. N.T. Nguyen, R. Sauleau, and C. J. M. Pérez, IEEE Trans. Antennas Propagat., 57, No. 7, 1907 (2009).

    Article  ADS  Google Scholar 

  13. G. T. Markov and D. M. Sazonov, Antennas [in Russian], Énergiya, Moscow (1975).

    Google Scholar 

  14. D. I. Voskresensky, V. L. Gostyukhin, V. M. Maksimov, and L. I. Ponomaryov, Microwave Devices and Antennas [in Russian], Radiotekhnika, Moscow (2006)

    Google Scholar 

  15. M. Kominami, D. M. Pozar, and D. H. Schaubert, IEEE Trans. Antennas Propagat., 33, No. 6, 600 (1985).

    Article  ADS  Google Scholar 

  16. D. U. Pow, Electron. Lett., 21, 49 (1985).

    Article  ADS  Google Scholar 

  17. D. M. Pozar, IEEE Trans. Antennas Propagat., 34, No. 12, 1439 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  18. G. V. Eleftheriades and G. M. Rebeiz, Int. J. Infrared Millimeter Waves, 14, No. 10, 1925 (1993).

    Article  ADS  Google Scholar 

  19. P. Otero, G. V. Eleftheriades, and J. R. Mosig, IEEE Trans. Antennas Propagat., 46, 1489 (1998).

    Article  ADS  Google Scholar 

  20. A. A. Artemenko, R. O. Maslennikov, A. G. Sevastyanov, and V.N. Ssorin, in: 19 Int. Crimean Conf. “Microwave Engineering and Telecommunication Technologies,” September 2009, p. 505.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Artemenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 55, No. 8, pp. 565–575, August 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artemenko, A.A., Mal’tsev, A.A., Maslennikov, R.O. et al. Studying integrated silicon-lens antennas for radio communication systems operated in the 60 GHz frequency band. Radiophys Quantum El 55, 511–519 (2013). https://doi.org/10.1007/s11141-013-9387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-013-9387-3

Keywords

Navigation