Skip to main content
Log in

Effects of modification of the polar ionosphere with high-power short-wave extraordinary-mode HF waves produced by the spear heating facility

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of modifying the F2 layer of the polar ionosphere experimentally with highpower HF extraordinary-mode waves. The experiments were performed in October 2010 using the short-wave SPEAR heating facility (Longyearbyen, Spitsbergen). To diagnose the effects of high-power HF waves by the aspect-scattering method in a network of diagnostic paths, we used the short-wave Doppler radar CUTLASS (Hankasalmi, Finland) and the incoherent scatter radar ESR (Longyearbyen, Spitsbergen). Excitation of small-scale artificial ionospheric irregularities was revealed, which were responsible for the aspect and backward scattering of the diagnostic signals. The measurements performed by the ESR incoherent scatter radar simultaneously with the heating demonstrated changes in the parameters of the ionospheric plasma, specifically, an increase in the electron density by 10–25 % and an increase in the electron temperature by 10–30 % at the altitudes of the F2 layer, as well as formation of sporadic ionization at altitudes of 140–180 km (below the F2 layer maximum). To explain the effects of ionosphere heating with HF extraordinary-mode waves, we propose a hypothesis of transformation of extraordinary electromagnetic waves to ordinary in the anisotropic, smoothly nonuniform ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gurevich, Phys. Usp., 50, No. 11, 1091 (2007).

    Article  ADS  Google Scholar 

  2. S. M. Grach, A. N. Karashtin, N. A. Mityakov, et al., Fiz. Plazmy, 4, 1330 (1978).

    Google Scholar 

  3. V. V. Vas’kov and A. V. Gurevich, Sov. Phys.–JETP, 42, 91 (1975).

    ADS  Google Scholar 

  4. N. F. Blagoveshchenskaya, Geophysical Effects of Modifications of the Near-Earth Space [in Russian], Gidrometeoizdat, St. Petersburg (2001).

    Google Scholar 

  5. T. R. Robinson, T. K. Yeoman, R. S. Dhillon, et al., Ann. Geophys., 24, 291 (2006), http://www.anngeophys.net/24/291/2006.

    Article  ADS  Google Scholar 

  6. R. S. Dhillon, T. R. Robinson, and T. K. Yeoman, Ann. Geophys., 25, 1801 (2007).

    Article  ADS  Google Scholar 

  7. N. F. Blagoveshchenskaya, T. D. Borisova, V. A. Kornienko, et al., Radiophys. Quantum Electron., 51, No. 11, 847 (2008).

    Article  ADS  Google Scholar 

  8. N. F. Blagoveshchenskaya, T. D. Borisova, T. K. Yeoman, and M. T. Rietveld, Radiophys. Quantum Electron., 53, 512 (2010).

    Article  ADS  Google Scholar 

  9. N. F. Blagoveshchenskaya, T. D. Borisova, T. K. Yeoman, et al., Geophys. Res. Lett., 38, L08802 (2011).

    Article  Google Scholar 

  10. H. Lofas, N. Ivchenko, B.Gustavsson, et al., Ann. Geophys, 27, 2585 (2009).

    Article  ADS  Google Scholar 

  11. M. T. Rietveld, M. J. Kosch, N. F. Blagoveshchenskaya, et al., J. Geophys. Res. A, 108, No. 4, SIA 2-1 (2003), doi:10.1029/2002JA009543.

  12. R. A. Greenwald, K. B. Baker, J. R. Dudeney, et al., Space Sci. Rev., 71, 761 (1995).

    Article  ADS  Google Scholar 

  13. N. V. Shulgina, Studies in Geomagnetism, Aeronomics, and Solar Physics [in Russian], Nauka, Moscow, No. 59, 40 (1982).

  14. T. D. Borisova, A. N. Baranetz, and Yu. N.Cherkashin, in: Propagation of Radio Waves in the Ionosphere [in Russian], Nauka, Moscow, 12 (1986).

    Google Scholar 

  15. V. V. Vas’kov and N. A. Ryabova, Adv. Space Res., 21, No. 5, 697 (1998).

    Article  ADS  Google Scholar 

  16. V. L. Frolov, L. M. Kagan, E. N. Sergeev, et al., J. Geophys. Res. A, 104, No. 6, 12695 (1999).

    Article  ADS  Google Scholar 

  17. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford (1970).

    Google Scholar 

  18. V. M. Vyatkin, Linear Transformation of Characteristic Waves in Inhomogeneous Magnetized Plasma in the Presence of Inhomogeneous Plasma in the Presence of Degeneration Points of Various Multiplicity. Cand. Sci. Thesis [in Russian], St.Petersburg (1992).

  19. A. V. Gurevich, K.P. Zybin, and H. S. Carlson, Radiophys. Quantum Electron., 48, No. 9, 686 (2005).

    Article  ADS  Google Scholar 

  20. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radio Wave Propagation in the Ionosphere [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  21. R. W. Schunk and A. Nagi, Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Uni. Press (2000).

  22. http://omniweb.gsfc.nasa.gov/vitmo/msis vitmo.html.

  23. W. B. Lyatsky and Yu. P. Maltsev, Magnetosphere–Ionosphere Interaction [in Russian], Nauka, Moscow (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Blagoveshchenskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 55, Nos. 1–2, pp. 140–157, January–February 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisova, T.D., Blagoveshchenskaya, N.F., S.Kalishin, A. et al. Effects of modification of the polar ionosphere with high-power short-wave extraordinary-mode HF waves produced by the spear heating facility. Radiophys Quantum El 55, 126–141 (2012). https://doi.org/10.1007/s11141-012-9353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-012-9353-5

Keywords

Navigation