Skip to main content
Log in

Equilibrium thermodynamic state of water vapor and the collisional interaction of molecules

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider all kinds of double and triple collisional interactions of molecules in a gas. Relation of the coefficients of the virial equation of state to dimer and trimer equilibrium constants is analyzed. The “excluded volume” for water vapor is estimated quantitatively. The volume is interpreted as an effective volume which is characterized by the range of molecular repulsive forces and is related to the collisional interaction of free monomers. Empirical data on water vapor in thermodynamic equilibrium are used for determination of the second and third virial coefficients, which serve for estimating the upper limits of the dimer and trimer equilibrium constants of water in the temperature range 273–1273 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. G.Kaplan, Introduction to the Theory of Intermolecular Interactions [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  2. T. Lucretius Carus, On the Nature of Things, Penguin, London (1994), Book 2, verses 333–477.

  3. J. E. Jones, Proc. Roy. Soc. Lond. A, 106, 441 (1924).

    Article  ADS  Google Scholar 

  4. D. E. Storgyn and J. O.Hirschfelder, J. Chem. Phys., 31, 1531 (1959).

    Article  ADS  Google Scholar 

  5. J.M. Calo and J.H.Brown, J. Chem. Phys., 61, 3931 (1974).

    Article  ADS  Google Scholar 

  6. A. A. Vigasin, in: C.Camy-Peyret and A. A. Vigasin, eds., Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, Kluwer, Dordrecht (2003), p. 111.

    Chapter  Google Scholar 

  7. I.V. Ptashnik, K.P. Shine, and A.A.Vigasin, J. Quantum Spectrosc. Rad. Transfer, 112, 1286 (2011).

    Article  ADS  Google Scholar 

  8. W.Wagner and A.Pruss, J. Phys. Chem. Ref. Data, 31, 387 (2002).

    Article  ADS  Google Scholar 

  9. M.Yu.Tretyakov and D. S.Makarov, J. Chem. Phys., 134, 084306 (2011).

    Article  ADS  Google Scholar 

  10. L.D. Landau and E. M. Lifshitz, Mechanics, Butterworth–Heinemann, Oxford (1976).

  11. R. H. Fowler and E.A.Guggenheim, Statistical Thermodynamics, Cambridge Univ. Press, Cambridge (1939).

    MATH  Google Scholar 

  12. T. L. Hill, Statistical Mechanics, McGraw-Hill, New York (1956).

    MATH  Google Scholar 

  13. A. N. Matveev, Molecular Physics [in Russian], Vysshaya Shkola, Moscow (1981), Ch. 4.

    Google Scholar 

  14. J. O.Hirschfelder, F. T.McClure, and I.F.Weeks, J. Chem. Phys., 10, 201 (1942).

    Article  ADS  Google Scholar 

  15. L. A.Curtiss and D. J. Frurip, J. Chem. Phys., 71, 2703 (1979).

    Article  ADS  Google Scholar 

  16. Y. Scribano, N.Goldman, R. J. Saykally, and C. Leforestier, J. Phys. Chem. A, 110, 5411 (2006).

    Article  Google Scholar 

  17. C.H.Tawnes and A. L. Schawlow, Microwave Spectroscopy McGraw-Hill, New York (1955), Ch. 13.

  18. J. -M.Hartman, C.Boulet, and D. Robert, Collisional Effects on Molecular Spectra, Elsevier, Amsterdam (2008), p. 48.

    Google Scholar 

  19. P. W. Daly and T.Oka, J. Chem. Phys., 53, 3272 (1970).

    Article  ADS  Google Scholar 

  20. L. S.Rothman, I. E. Gordon, A.Barbe, et al., J. Quantum Spectrosc. Rad. Transfer, 110, 533 (2009). http://www.cfa.harvard.edu/HITRAN.

    Article  ADS  Google Scholar 

  21. J. Buldyreva, N. Lavrentieva, and V. Starikov, Collisional Line Broadening and Shifting of Atmospheric Gases, Imperial College Press, London (2011), Ch. 2.

  22. F. N.Keutsch, N. Goldman, H. A. Harker, et al., Mol. Phys., 101, 3477 (2003).

    Article  ADS  Google Scholar 

  23. A. H. Harvey and E.W. Lemmon, J. Phys. Chem. Ref. Data, 33, 369 (2004).

    Article  ADS  Google Scholar 

  24. NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/fluid .

  25. M.A. Suhm, Science, 304, 823 (2004).

    Article  Google Scholar 

  26. Y. Scribano and C. Leforestier, J. Chem. Phys., 126, 234301 (2007).

    Article  ADS  Google Scholar 

  27. A.F. Krupnov and M.Yu.Tretyakov, Opt. Atmos. Okeana, 22, 107 (2009).

    Google Scholar 

  28. M. A.Koshelev, E.A. Serov, V.V. Parshin, and M.Yu.Tretyakov, J. Quantum Spectrosc. Rad. Transfer, 112, 2704 (2011).

    Article  ADS  Google Scholar 

  29. A. A. Vigasin, Mol. Phys., 108, 2309 (2010).

    Article  ADS  Google Scholar 

  30. A.F. Krupnov, M.Yu.Tretyakov, and C. Leforestier, J. Quantum Spectrosc. Rad. Transfer, 110, 427 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Tretyakov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 54, No. 10, pp. 778–796, October 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tretyakov, M.Y., Serov, E.A. & Odintsova, T.A. Equilibrium thermodynamic state of water vapor and the collisional interaction of molecules. Radiophys Quantum El 54, 700–716 (2012). https://doi.org/10.1007/s11141-012-9332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-012-9332-x

Keywords

Navigation