Skip to main content
Log in

Simulation of mesospheric-composition disturbances under the action of high-altitude discharges (sprites)

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Recent measurements show that a mesospheric electric discharge (sprite) can provoke disturbances in the chemical composition of the mesosphere. In this paper, we propose a plasmachemical system of equations which allows one to describe the complex relationship among chemical components during the discharge. Disturbances of the mesospheric ion composition are analyzed under the night-time and daytime conditions at an altitude of 75 km, which is typical of the sprite initiation and at an altitude of 85 km where the diffuse region of discharge is usually observed. The most probable scenarios of development of the electric-field and electron-temperature disturbances, which are characteristic of the diffusive and streamer regions of the sprite, are simulated. The value and characteristic time of disturbances of the main ion components (O2 +, NO+, H3O+, H5O2 +, and N2 +) are evaluated. The obtained values of the electron-density disturbances are in agreement with experimental and theoretical data. It was established that the sprite series, which are recorded over the vast stratified regions of mesoscale convection systems, can lead to generation of comparatively long-lived disturbances in the ion composition of mesospheric plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Neubert, Science, 300, 747 (2003).

    Article  Google Scholar 

  2. E. R. Williams, em Phys. Today, 54, 41 (2001).

    Article  Google Scholar 

  3. M. Fullekrug, E. Mareev, and M. Rycroft, Sprites, Elves, and Intense Lightning Discharges, Springer, New York (2006).

    Book  Google Scholar 

  4. D Sentman and E. Wescott, Phys. Plasmas, 2, 2514 (1995).

    Article  ADS  Google Scholar 

  5. Y. Hiraki, L. Tong, H. Fukunishi, et al., Geophys. Res. Lett., 31, 14105 (2001).

    Article  Google Scholar 

  6. S. B. Mende, H. U. Frey, R. R. Hsu, et al., J. Geophys. Res., 110, A11312 (2005).

    Article  ADS  Google Scholar 

  7. D. D. Sentman, H. C. Stenbaek-Nielsen, M. G. McHarg, and J. S. Morrill, J. Geophys. Res., 113, D11112 (2008).

    Article  ADS  Google Scholar 

  8. E. Mishin, Geophys. Res. Lett., 24, No. 15, 1919 (1997).

    Article  ADS  Google Scholar 

  9. N. V. Smirnova, A. N. Lyakhov, and S. I. Kozlov, Int. J. Geomagn. Aeron., 3, No. 3, 281 (2003).

    Google Scholar 

  10. E. Mishin and G. Milikh, Space Sci. Rev., 137, 1 (2008).

    Article  Google Scholar 

  11. M. Sato and H. Fukunishi, Geophys. Res. Lett., 30, No. 16, 1859 (2003).

    Article  ADS  Google Scholar 

  12. A. B.Chen, C. -L.Kuo, Y. -J. Lee, et al., J. Geophys. Res., 113, A08306 (2008).

    Article  Google Scholar 

  13. V. P. Pasko, U. S. Inan, T. F. Bell, and Y. N. Taranenko, J. Geophys. Res., 102, No. A3, 4529 (1997).

    Article  ADS  Google Scholar 

  14. V. P. Pasko and H. C. Stenbaek-Nielsen, Geophys. Res. Lett., 29, No. 10, 1440 (2002).

    Article  ADS  Google Scholar 

  15. E. R. Williams, J. Atmos. Terr. Phys., 60, 689 (1998).

    Article  ADS  Google Scholar 

  16. E. R. Williams, E. Huang, R. Boldi, et al., J. Geophys. Res., 104, 16943 (1999).

    Article  ADS  Google Scholar 

  17. V. A. Rakov and M. A. Uman, Lightning: Physics and Effects, Cambridge University Press (2002).

  18. D. L. Hampton, M. J. Heavner, E. M. Wescott, and D. D. Sentman, Geophys. Res. Lett., 23, No. 1, 89 (1996).

    Article  ADS  Google Scholar 

  19. B. D. Green, M. E. Fraser, W. T. Rawlins, et al., Geophys. Res. Lett., 23, No. 16, 2161 (1996).

    Article  ADS  Google Scholar 

  20. A. D. Danilov and M. N. Vlasov, Photochemistry of Ionized and Excited Particles in the Lower Ionosphere [in Russian], Gidrometeoizdat, Leningrad (1973).

    Google Scholar 

  21. I. A.Kossyi, A. Yu. Kostinskii, A. A. Matveev, and V. P. Silakov, Trudy IOFAN, 47, 20 (1994).

    Google Scholar 

  22. V. V. Adushkin, Ecological Problems and Risks of Environmental Impact from the Rocket-and-Space Technologies [in Russian], Ankil, Moscow (2000).

    Google Scholar 

  23. R. L. Dowden, C. J. Rodger, and D. Nunn, IEEE Ant. Propagat. Magazine, 34, No. 2, 12 (2001).

    Article  ADS  Google Scholar 

  24. V. E. Kunitsin, E. D. Tereshchenko, E. S. Andreeva, and I. A. Nesterov, Usp. Fiz. Nauk, 180, No. 5, 548.

  25. N. Liu, V. P. Pasko, H. U. Frey, et al., J. Geophys. Res., 114, A00E02 (2009).

    Article  Google Scholar 

  26. M. Yu. Kulikov, A. M. Feigin, J. Adv. Space Res., 35, No. 11, 1992 (2005).

    Article  ADS  Google Scholar 

  27. G. Sonnemann and B. Fichtelmann, Z. Meteorol., 39, No. 6, 297 (1989).

    Google Scholar 

  28. A. A. Krivolutskii and A. I. Repnev, Impact of the Space Factors on the Terrestrial Ozonosphere [in Russian], GEOS, Moscow (2009).

    Google Scholar 

  29. E. A. Mareev and S. A. Yashunin, Izv. Ros. Akad. Nauk Fiz. Atmos. Okeana, 46, No. 1, 78 (2010).

    Google Scholar 

  30. E. A. Gerken and U. S. Inan, J. Geophys. Res. A, 107, No. 11, 1344 (2002).

    Article  ADS  Google Scholar 

  31. R. F. Fernsler and H. L. Rowland, J. Geophys. Res. D, 101, No. 23, 29653 (1996).

    Article  ADS  Google Scholar 

  32. M. Hayakawa, D. I. Iudin, E. A. Mareev, and V. Yu. Trakhtengerts, Phys. Plasmas, 14, No. 4, 42902 (2007).

    Article  Google Scholar 

  33. T. Asano, T. Suzuki, Y. Hiraki, et al., J. Geophys. Res. A, 114, L02310 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mareev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 54, No. 2, pp. 123–140, January 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evtushenko, A.A., Mareev, E.A. Simulation of mesospheric-composition disturbances under the action of high-altitude discharges (sprites). Radiophys Quantum El 54, 111–127 (2011). https://doi.org/10.1007/s11141-011-9275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-011-9275-7

Keywords

Navigation