Skip to main content
Log in

Modification of the high-latitude ionosphere by high-power hf radio waves. 2. Results of coordinated satellite and ground-based observations

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of coordinated satellite and ground-based observations of the high-latitude ionospheric phenomena induced by high-power high-frequency (HF) radio waves. The ion outflow phenomenon accompanied by a strong increase in the electron temperature and thermal expansion of plasma was observed in the evening hours, when the high-latitude ionospheric F region was heated by high-power O-mode HF radio waves. The DMSP F15 satellite recorded an increase in the ion number density O+ at an altitide of about 850 km in that period. Ultralow-frequency (ULF) radiation at the modulation frequency 3 Hz of the high-power HF radio waves, which was generated in the ionosphere irradiated by high-power O-mode HF radio waves and accompanied by a strong increase in the electron temperature and the generation of artificial small-scale ionospheric irregularities, was recorded by the CHAMP satellite during the heating experiment in Tromsø in November 5, 2009. The results of the DEMETER satellite observations of extremely low frequency (ELF) radiation at the modulation frequency 1178 Hz of the high-power radio waves in the heating experiments were analyzed using the event of March 3, 2009 as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Blagoveshchenskaya, T. K. Yeoman, and M. T. Rietveld, Radiophys. Quantum Electron., 53, Nos. 9–10, 512 (2010).

    ADS  Google Scholar 

  2. MT. Rietveld, H. Kohl, H. Kopka, and P. Stubbe, J. Atmos. Terr. Phys., 55, 577 (1993).

    Google Scholar 

  3. G. M. Milikh, E. Mishin, A. Galkin, et al., Geophys. Res. Lett ., 17, article No. L18102 (2010).

  4. C. Reigber, H. Lühr, and P. Schwintzer, Adv. Space Res., 30, No. 2, 129 (2002).

    Article  ADS  Google Scholar 

  5. R. A. Greenwald, K. B. Baker, J.R.Dudeney, et al., Space Sci. Rev., 71, 761 (1995).

    Article  ADS  Google Scholar 

  6. M.Parrot, J. Geodyn., 33, 535 (2002).

    Article  Google Scholar 

  7. C. Foster, M. Lester, and J. A. Davies, Ann. Geophys., 16, 1144 (1998).

    Article  ADS  Google Scholar 

  8. J. -E. Wahlund, H. J. Opgenoorth, I.Häggström, et al., J. Geophys. Res., 97, 3019 (1992).

    Article  ADS  Google Scholar 

  9. F. R. E. Forme and D. Fontaine, Ann. Geophys., 17, 190 (1999).

    Article  ADS  Google Scholar 

  10. N. F. Blagoveshchenskaya, Geophysical Active Effects in Near-Earth Space [in Russian], Gidrometeoizdat, St. Petersburg (2001).

    Google Scholar 

  11. M. T. Rietveld, M. J.Kosch, N. F.Blagoveshchenskaya, et al., J. Geophys. Res. A, 108, No. 4, 1141 (2003).

    Article  ADS  Google Scholar 

  12. N. F. Blagoveshchenskaya, T. D. Borisova, V. A. Kornienko, et al., Ann. Geophys., 23, No. 1, 87 (2005).

    Article  ADS  Google Scholar 

  13. N. F. Blagoveshchenskaya, V. A. Kornienko, T. D. Borisova, et al., Adv. Space Res., 38, 2495 (2006).

    Article  ADS  Google Scholar 

  14. G. M. Milikh, K. Papadopoulos, H. Shroff, et al., Geophys. Res. Lett ., 35, L17104 (2008).

    Article  ADS  Google Scholar 

  15. G. G. Getmantsev, N. S. Zuikov, D. S.Kotik, et al., JETP Lett ., 20, 101 (1974).

    ADS  Google Scholar 

  16. G. M. Milikh, K. Papadopoulos, M. McCarric, and J. Preston, Radiophys. Quantum Electron., 42, No. 8, 639 (1999).

    Article  ADS  Google Scholar 

  17. P. Stubbe, J. Atmos. Solar-Terr. Phys., 58, 349 (1996).

    Article  ADS  Google Scholar 

  18. P. Stubbe and H. Kopka, J. Geophys. Res., 82, 2319 (1977).

    Article  ADS  Google Scholar 

  19. T. R. Robinson, R. Strangeway, D. M. Wright, et al., Geophys. Res. Lett ., 27, 3165 (2000).

    Article  ADS  Google Scholar 

  20. V. O. Rapoport, V. L. Frolov, G. P. Komrakov, et al., Radiophys. Quantum Electron., 50, No. 8, 645 (2007).

    Article  ADS  Google Scholar 

  21. V. L. Frolov, V. O. Rapoport, G. P. Komrakov, et al., JETP Lett ., 88, No. 12, 790 (2008).

    Article  ADS  Google Scholar 

  22. V. L. Frolov, V. O. Rapoport, G.P.Komrakov, et al., Radiophys. Quantum Electron., 51, No. 11, 825 (2008).

    Article  ADS  Google Scholar 

  23. G. A. Markov, A. S. Belov, V. L. Frlov, et al., Radiophys. Quantum Electron., 51, No 11, 834 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Blagoveshchenskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 54, No. 2, pp. 97–112, February 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blagoveshchenskaya, N.F., Borisova, T.D., Kornienko, V.A. et al. Modification of the high-latitude ionosphere by high-power hf radio waves. 2. Results of coordinated satellite and ground-based observations. Radiophys Quantum El 54, 89–101 (2011). https://doi.org/10.1007/s11141-011-9273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-011-9273-9

Keywords

Navigation