Skip to main content
Log in

Using Lorentz’s theorem for studying the propagation wave packets in a nonlinear medium

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We obtain integral relationships expressing the amplitude of wave-packet field on the output surface of a layer via the field amplitude on the input surface, the field on the side surface of the layer, and the integral of the nonlinear currents inside the layer at the previous times in the spectral and spatiotemporal forms. These relationships allow one to perform studies and develop numerical simulation algorithms of propagation and interaction of wave packets which have wide frequency and angular spectra, including calculations of excitation of evanescent waves in the case of sharp focusing or formation of supernarrow filaments. Using the obtained relationships, we propose an algorithm that employs a simple iteration of the first order and allows one to significantly speed up the calculations. The possibility of using the fast Fourier transform to develop algorithms for numerical simulation of the boundary-value problems of nonlinear optics is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev., 127, 1918 (1962).

    Article  ADS  Google Scholar 

  2. S. A. Akhmanov and R. V. Khokhlov, Problems of Nonlinear Optics [in Russian], Moscow (1964).

  3. V. I. Talanov, JETP Lett., 2, No. 5, 138 (1965).

    ADS  Google Scholar 

  4. P. L. Kelley, Phys. Rev. Lett., 15, 1005 (1965).

    Article  ADS  Google Scholar 

  5. V. I. Bespalov, A. G. Litvak, and V. I. Talanov, in: Nonlinear Optics [in Russian], Nauka, Moscow (1968), p. 428.

  6. É. M. Belenov and A. V. Nazarkin, JETP lett., 53, No. 4, 200 (1991).

    ADS  Google Scholar 

  7. A. N. Azarenkov, G. B. Al’tshuler, N. R. Belashenkov, and S. A. Kozlov, Quantum Electron., 20, No. 8, 633 (1993).

    Article  ADS  Google Scholar 

  8. A. A. Balakin, A. G. Litvak, V. A. Mironov, and S. A. Skobelev, JETP, 104, No. 3, 363 (2007).

    Article  ADS  Google Scholar 

  9. S. A. Akhmanov, A. S. Chirkin, and V. A. Vysloukh, Optics of Femtosecond Laser Pulses [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  10. A. P. Sukhorukov, Nonlinear Wave Interactions in Optics and Radiophysics [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  11. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, New York (1995).

    Google Scholar 

  12. T. Brabec and F. Krausz, Phys. Rev. Lett., 78, 3282 (1997).

    Article  ADS  Google Scholar 

  13. M. Kolesik, J. V. Moloney, and M. Mlejnek, Phys. Rev. Lett., 89, No. 28, 283902 (2002).

    Article  ADS  Google Scholar 

  14. M. Kolesik and J. V. Moloney, Phys. Rev. E, 70, No. 3, 036604 (2004).

    Article  ADS  Google Scholar 

  15. S. A. Vlasov, Quantum Electron., 14, No. 9, 1191 (1987).

    ADS  Google Scholar 

  16. M. D. Feit and J. A. Flek, J. Opt. Soc. Am. B, 5, No. 3, 633 (1988).

    Article  ADS  Google Scholar 

  17. S. N. Vlasov, E. V. Koposova, and V. I. Talanov, Radiophys. Quantum Electron., 49, No. 4, 288 (2006).

    Article  ADS  Google Scholar 

  18. I. N. Ross, P. Matousek, M. Towrie, et al., Opt. Commun., 144, 125 (1991).

    Article  ADS  Google Scholar 

  19. S. N. Vlasov, E. V. Koposova, and G. I. Freidman, Quantum. Electron., 39, No. 5, 393 (2009).

    Article  ADS  Google Scholar 

  20. T. Ditmire, A. M. Rubenchik, D. Eimerl, and M. D. Perry, Opt. Soc. Am., 13, No. 4, 649 (1996).

    Article  ADS  Google Scholar 

  21. S. Yu. Mironov, V. V. Lozhkarev, V. N. Ginzburg, and E. A. Khazanov, Appl. Opt., 48, 2051 (2009).

    Article  ADS  Google Scholar 

  22. J. T. Gopinath, H. M. Shen, H. Sotobayashi, and E. P. Ippen, Opt. Express., 12, No. 23, 5697 (2004).

    Article  ADS  Google Scholar 

  23. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media Pergamon Press, Oxford (1984).

    Google Scholar 

  24. J. D. Jackson, Classical Electrodynamics, Wiley, New York (1998).

    Google Scholar 

  25. A. Pukhov, Rep. Progr. Phys., 4, No. 1, 217 (1997).

    Google Scholar 

  26. M. I. Kontorovich, Operational Calculus and Nonstationary Phenomena in Electric Circuits [in Russian], GITTL, Moscow (1955).

    Google Scholar 

  27. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  28. V. P. Silin, Introduction to the Kinetic Theory of Gases [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  29. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York (2007).

    MATH  Google Scholar 

  30. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw Hill, New York (1968).

    Google Scholar 

  31. B. Z. Katsenelenbaum, High Frequency Elctrodynamics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  32. S. N. Vlasov and E. V. Koposova, Radiophys. Quantum Electron., 48, No. 4, 305 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Fridman.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 54, No. 1, pp. 41–59, January 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fridman, G.I. Using Lorentz’s theorem for studying the propagation wave packets in a nonlinear medium. Radiophys Quantum El 54, 38–55 (2011). https://doi.org/10.1007/s11141-011-9270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-011-9270-z

Keywords

Navigation