Skip to main content
Log in

Laboratory modeling of the interaction of electron beams with a magnetoplasma

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of laboratory experiments in which the mechanisms of interaction of electron beams with whistler waves in a magnetoplasma are studied. Different mechanisms of whistler generation during the injection of a modulated electron beam in the plasma are studied, and the mechanism of conversion of the beam kinetic energy to radiation is demonstrated. The processes of whistler wave generation by the modulated beam at the ˇ Cerenkov and Doppler resonances are analyzed in detail. The excitation of whistler waves by means of a nonresonant mechanism of the transition radiation is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Lorentzen, J. Blake, U. Inan, and J. Bortnik, J. Geophys. Res., 106, 6017 (2001).

    Article  ADS  Google Scholar 

  2. V. V.Vas’kov, Radiophys. Quantum Electron., 39, No. 2, 111 (1996).

    Article  ADS  Google Scholar 

  3. T. Neubert and P. Banks, Planet. Space Sci., 40, 153 (1992).

    Article  ADS  Google Scholar 

  4. J. Winckler, Rev. Geophys. Space Phys., 18, 659 (1980).

    Article  ADS  Google Scholar 

  5. J. Winckler, Rev. Mod. Phys., 64, 859 (1992).

    Article  ADS  Google Scholar 

  6. C. Beghin, J. Lebreton, B. Maehlum, et al., Science, 225, 188 (1984).

    Article  ADS  Google Scholar 

  7. R. Helliwell, Modern Radio Science, Oxford Univ. Press, New York (1993), p. 189.

    Google Scholar 

  8. M. Rycroft, Planet. Space Sci., 21, 239 (1973).

    Article  ADS  Google Scholar 

  9. R. Horne and R. Thorne, Geophys. Res. Lett., 30, 1527 (2003).

    Article  ADS  Google Scholar 

  10. W. Imhof, H. Voss, J. Mobilia, et al., J. Geophys. Res., 94, 10079 (1989).

    Article  ADS  Google Scholar 

  11. D. Gurnett and L. Frank, J. Geophys. Res., 77, 172 (1972).

    Article  ADS  Google Scholar 

  12. E. Bering, J. Maggs, and H. Anderson, J. Geophys. Res., 92, 7581 (1987).

    Article  ADS  Google Scholar 

  13. Y. Omura, D. Nunn, H. Matsumoto, and M. Rycroft, J. Atmos. Terr. Phys., 53, 351 (1991).

    Article  ADS  Google Scholar 

  14. R. Helliwell, Rev. Geophys., 26, 551 (1988).

    Article  ADS  Google Scholar 

  15. V. Pivovarov, A. Burke, S. Ride, and V. Shapiro, J. Geophys. Res., 100, 17515 (1995).

    Article  ADS  Google Scholar 

  16. M. Starodubtsev, C. Krafft, P. Thevenet, and A. Kostrov, Phys. Plasmas, 6, 1427 (1999).

    Article  ADS  Google Scholar 

  17. M. Starodubtsev and C. Krafft, Phys. Plasmas, 6, 2598 (1999).

    Article  ADS  Google Scholar 

  18. M. Starodubtsev, C. Krafft, B. Lundin, and P. Thevenet, Phys. Plasmas, 6, 2862 (1999).

    Article  ADS  Google Scholar 

  19. M. Starodubtsev and C. Krafft, Phys. Rev. Lett., 83, 1335 (1999).

    Article  ADS  Google Scholar 

  20. M. Starodubtsev, C. Krafft, and P. Thevenet, IEEE. Trans. Plasma Sci., 28, 367 (2000).

    Article  ADS  Google Scholar 

  21. M. Starodubtsev and C. Krafft, J. Plasma Phys., 63, 285 (2000).

    Article  ADS  Google Scholar 

  22. C. Krafft and M. Starodubtsev, Planet. Space Sci., 50, 129 (2002).

    Article  ADS  Google Scholar 

  23. C. Krafft and M. Starodubtsev, Earth, Moon and Planets, 80, 155 (1998).

    Article  ADS  Google Scholar 

  24. A.V. Kostrov, M.V. Starodubtsev, C. Krafft, G.Matthieussent, and A. S.Volokitin, JETP Lett., 67, No. 6, 400 (1998).

    Article  ADS  Google Scholar 

  25. H. Sugai, Phys. Rev. Lett., 47, 1899 (1981).

    Article  ADS  Google Scholar 

  26. D. Whelan and R. Stenzel, Phys. Rev. Lett., 47, 95 (1981).

    Article  ADS  Google Scholar 

  27. R. Ellis, G. Tsakiris, C. Wang, and D. Boyd, Plasma Phys. Control. Fusion, 28, 327 (1986).

    Article  ADS  Google Scholar 

  28. T. Intrator, N. Hershkowitz, and C. Chan, Phys. Fluids, 27, 527 (1984).

    Article  ADS  Google Scholar 

  29. R. Boswell, I. Morey, and R. Porteous, J. Geophys. Res., 94, 2654 (1989).

    Article  ADS  Google Scholar 

  30. R. Stenzel, J. Geophys. Res., 82, 4805 (1977).

    Article  ADS  Google Scholar 

  31. R. L. Stenzel, Radio Sci., 11, 1045 (1976).

    Article  ADS  Google Scholar 

  32. M. Starodubtsev, V. Nazarov, A. Kostrov, and G. Permitin, Phys. Rev. E, 72, 026401 (2005).

    Article  ADS  Google Scholar 

  33. A.V. Kostrov, A. I. Smirnov, M.V. Starodubtsev, and A.A. Shaikin, JETP Lett., 67, No. 8, 579 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Starodubtsev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 53, No. 7, pp. 445–463, July 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starodubtsev, M.V., Krafft, C. Laboratory modeling of the interaction of electron beams with a magnetoplasma. Radiophys Quantum El 53, 401–416 (2010). https://doi.org/10.1007/s11141-010-9238-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-010-9238-4

Keywords

Navigation