Skip to main content
Log in

Excitation of Rayleigh and Stoneley surface acoustic waves by distributed seismic sources

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Using the integral Fourier-transform technique, we obtain a solution in integral form to the problem of excitation of elastic waves in a homogeneous isotropic solid half-space and the bordering homogeneous gas by the time-dependent forces which are arbitrarily distributed in a solid over the plane parallel to the interface of the media. Different configurations of the force sources are analyzed from the viewpoint of excitation of different types of seismoacoustic waves. Expressions for the time-averaged radiated powers of the Stoneley wave at the gas–solid interface and the Rayleigh wave at the solid–vacuum interface as well as analytical expressions for the Rayleigh wave displacements, which are valid for large distances from the source, are obtained for the harmonic dependence of forces on time. Excitation of a Rayleigh wave by the point sources oriented vertically, i.e., along the normal to the surface of elastic half-space, and horizontally, i.e., parallel to this surface, is analyzed in detail. Analytical expressions for the Rayleigh-wave radiated power are obtained. The dependences of these powers on the source orientation and depth are derived. It is shown that the Rayleigh-wave radiated power decreases with distance between the point of the force application and the boundary and turns to zero for a source depth of about 17.5% of the wavelength of the transverse wave in the case of a horizontally oriented subsurface source and a medium with identical Lamé parameters λ and μ. This power increases and reaches a relative maximum when the source depth becomes equal to about 42.4% of the wavelength of the transverse wave and then exponentially falls off as the source depth increases. This maximum is about 5.5% of the surface-source radiated power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Al’perovich, E. A.Ponomarev, and G.V. Fedorovich, Izv. Akad. Nauk SSSR, Fiz. Zemli, 213, No. 11, 9 (1985).

    Google Scholar 

  2. V. I. Drobzhev, E.V. Zheleznyakov, I.K. Idrisov, et al., Radiophys. Quantum Electron.., 30, No. 12, 1047 (1987).

    Article  ADS  Google Scholar 

  3. M.Goshdzhanov, D.Boltaev, A. Karryev, et al., Izvestiya Phys. Solid Earth, 32, No. 2, 169 (1996).

    Google Scholar 

  4. É. L. Afraimovich, E. A.Kosogorov, A.V. Plotnikov, and A. M. Uralov, Izvestiya, Phys. Solid Earth, 37, No. 6, 452 (2001).

    Google Scholar 

  5. É. L. Afraimovich, É. I.Astafieva, and V. V. Kiryushkin, Radiophys. Quantum Electron., 48, No. 4, 268 (2005).

    Article  ADS  Google Scholar 

  6. V. V.Kuznetsov, V. V. Plotkin, and S.Yu.Khomutov, Doklady Earth Sci., 370, No. 1, 129 (2000).

    Google Scholar 

  7. A. V. Razin, Radiophys. Quantum Electron., 50, No. 7, 570 (2007).

    Article  ADS  Google Scholar 

  8. A. V. Razin, Radiophys. Quantum Electron., 49, No. 7, 520 (2006).

    Article  ADS  Google Scholar 

  9. L.D. Landau and E. M. Lifshitz, Theory of Elasticity, Butterworth-Heinemann (1986).

  10. G. I. Petrashen’, in: Problems of Dynamic Theory of Propagation of Seismic Waves [in Russian], Nauka, Leningrad (1978), No. 18, p. 1.

    Google Scholar 

  11. V. Z.Parton and P. I.Perlin, Mathematical Methods of the Theory of Elasticity Mir, Moscow (1984).

    MATH  Google Scholar 

  12. L. I. Sedov, Mechanics of Continuous Media, Vol. 1 World Scientific, Singapore (1996).

    Google Scholar 

  13. S.P.Demidov, Theory of Elasticity [in Russian], Vysshaya Shkola, Moscow (1979).

    Google Scholar 

  14. V.T. Grinchenko and V.V.Meleshko, Time-Harmonic Oscillations and Waves in Elastic Bodies [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  15. L.D. Landau and E. M. Lifshitz, Fluid Mecahanics Butterworth-Heinemann, Oxford (1987).

    Google Scholar 

  16. K. Aki and P. G.Richards, Quantitative Seismology, Freeman and Co., New York (1980).

    Google Scholar 

  17. V.P. Dokuchaev, Izvestiya, Phys. Solid Earth, 32, No. 1, 67 (1996).

    MathSciNet  Google Scholar 

  18. L. M. Brekhovskikh, Waves in Layered Media, Academic Press, New York (1980).

    MATH  Google Scholar 

  19. L. M. Brekhovskikh and O.A.Godin, Acoustics of Layered Media, Springer-Verlag, Berlin (1998).

    Google Scholar 

  20. I. N.Toptygin, Cosmic Rays in the Interplanetary Magnetic Fields, D. Reidel, Dordrecht (1985).

    Google Scholar 

  21. L. B. Felsen and N.Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, Engelwood Cliffs, NJ (1973).

    Google Scholar 

  22. A. L.Orlov and A. V. Razin, Izv. Ros. Akad. Nauk, Fiz. Zemli, 29, No. 2, 78 (1993).

    Google Scholar 

  23. M. A. Isakovich, General Acoustics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  24. A. V. Razin, Izv. Akad. Nauk SSSR, Fiz. Zemli, 27, No. 12, 100 (1991).

    Google Scholar 

  25. V.P. Dokuchaev and A. V. Razin, Izv. Akad. Nauk SSSR, Fiz. Zemli, 26, No. 10, 81 (1990).

    Google Scholar 

  26. G. F. Miller and H. Pursey, Proc. Roy. Soc. A, 233, No. 1192, 55 (1955).

    Article  MATH  ADS  Google Scholar 

  27. V. V. Gushchin, V. P.Dokuchaev, Yu. M. Zaslavsky, and I.D.Konyukova, Studies of the Earth by Nonexplosive Seismic Sources, [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  28. A. V. Razin, Acoust. Phys., 55, No.2, 227 (2009).

    Article  ADS  Google Scholar 

  29. A. V. Razin, “Distribution of the Radiated power among the types of elastic waves excited in a solid half-space by a subsurface time-harmonic force source,” Preprint No. 497 [in Russian], Radiophys. Res. Inst., Nizhny Novgorod (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Razin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 53, No. 2, pp. 91–109, January 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razin, A.V. Excitation of Rayleigh and Stoneley surface acoustic waves by distributed seismic sources. Radiophys Quantum El 53, 82–99 (2010). https://doi.org/10.1007/s11141-010-9205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-010-9205-0

Keywords

Navigation