Skip to main content
Log in

Studies of continuous-wave submillimeter-wave gyrotrons for spectroscopy and diagnostics of various media

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of experimental studies of submillimeter-wave gyrotrons, which were obtained in the Research Center for Development of Far-Infrared Region of Fukui University (Japan). Distinctive features of the systems forming helical electron beams in submillimeter-wave gyrotrons are described. The results of the theoretical studies, which were aimed at excitation of higher harmonics in submillimeter-wave gyrotrons, reducing the operating voltage, and creating devices with smooth wideband tuning of the generation frequency, are presented. It is shown that modern gyrotrons are capable of ensuring continuous-wave generation at the frequencies from 200 to 400 GHz at a power level of up to hundreds of watts, and up to tens of kilowatts in the pulse-generation regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Griffin, in: Joint 33rd Int. Conf. on Infrared and Millimeter Waves and 16th Int. Conf. on Terahertz Electronics, Pasadena, USA, 2008, p. F1P2.

  2. V.E. Zapevalov, Radiophys. Quantum Electron., 49, No. 10, 779 (2006).

    Article  ADS  Google Scholar 

  3. P. Krivosheev, V. Lygin, V.Manuilov, and Sh. Tsimring Sh., Int. J. Infrared Millimeter Waves, 22, No. 8, 1119 (2001).

    Article  Google Scholar 

  4. V. E. Zapevalov, A. N.Kuftin, and V.K. Lygin, Radiophys. Quantum Electron., 50, No. 9, 702 (2007).

    Article  ADS  Google Scholar 

  5. T. Idehara, T. Saito, and I.Ogawa, Appl. Magnetic Resonance, 34, Nos. 3–4, 265 (2009).

    ADS  Google Scholar 

  6. T. Idehara, I.Ogawa, S.Kobayashi, et al., in: 35th Int. Conf. Plasma Sci. (ICOPS 2008), Karlsruhe, Germany, 2008, p. 253.

    Google Scholar 

  7. V.Manuilov, T. Idehara, T. Saito, et al., Int. J. Infrared Millimeter Waves, 29, No. 12, 1103 (2008).

    Article  ADS  Google Scholar 

  8. T. Notake, T. Saito, Y.Tatematsu, et al., Plasma Fusion Res., 4, 011 (2009).

    Article  ADS  Google Scholar 

  9. T.B. Pankratova and G. S.Nusinovich, Zh. Tekh. Fiz., 59, No. 8, 110 (1989).

    Google Scholar 

  10. T. Idehara, I.Ogawa, S. Mitsudo, et al., IEEE Trans. Plasma Sci., 27, No. 2, 340 (1999).

    Article  ADS  Google Scholar 

  11. M. Hornstein, V. Bajaj, R. Griffin, et al., IEEE Trans. Electron Devices, 52, 798 (2005).

    Article  ADS  Google Scholar 

  12. V. Bratman, M. Glyavin, T. Idehara, et al., IEEE Trans. Plasma Sci., 37, No. 1, 36 (2009).

    Article  ADS  Google Scholar 

  13. D.B.McDermott, N. C. Luhmann, A. Kupiszewski, Jr., and H.R. Jory, Phys. Fluids, 26, No. 7, 1936 (1983).

    Article  ADS  MATH  Google Scholar 

  14. V. Bratman, Yu.Kalynov, and V. Manuilov, Phys. Rev. Lett., 102, 245101 (2009).

    Article  ADS  Google Scholar 

  15. S. A. Malygin, Elektron. Tekh. Ser. Electron. SVCh, 31, 106 (1986).

    Google Scholar 

  16. M. Glyavin, A. Luchinin, V.Manuilov, and G.Nusinovich, IEEE Trans. Plasma Sci. 36, No. 3, 591 (2008).

    Article  ADS  Google Scholar 

  17. V.E. Zapevalov and O. V. Malygin, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 26, No. 7, 903 (1983).

    Google Scholar 

  18. B.Danly and R.Temkin, Phys. Fluids, 29, 561 (1986).

    Article  ADS  Google Scholar 

  19. L. Becerra, G.Gerfen, R.Temkin, et al., Phys. Rev. Lett., 71, 3561 (1993).

    Article  ADS  Google Scholar 

  20. K.Hong, G.Brand, and T. Idehara, J. Appl. Phys., 74, 5250 (1993).

    Article  ADS  Google Scholar 

  21. S. N. Vlasov, G.M. Zhislin, I.M.Orlova, et al., Radiophys. Quantum Electron., 12, No. 8, 1236 (1977).

    Google Scholar 

  22. S. T.Han, I.Mastovsky, M.A. Shapiro, et al., in: Int. PPPS Conf., Albuquerque, New Mexico, 2007, p. 7B6.

  23. A. L. Gol’denberg, M.Yu. Glyavin, N. A. Zavolsky, and V. N.Manuilov, Radiophys. Quantum Electron., 48, No. 10–11, 741 (2005).

    Article  ADS  Google Scholar 

  24. La Agusu, T. Idehara, T. Saito, et al., in: Joint 33rd Int. Conf. on Infrared and Millimeter Waves and 16th Int. Conf. on Terahertz Electronics, Pasadena, USA, 2008, p. 5D26.1308.

  25. M.Thumm, Laboratory Report FZKA 7467, Karlsruhe (2009), bibliothek.fzk.de/zb/berichte/FZKA7467.pdf.

  26. I. I.Antakov, S. N. Vlasov, V.A.Gintsburg, et al., Elektron. Tekh. Ser. Electron. SVCh, 27, No. 8, 20 (1975).

    Google Scholar 

  27. E. Zasypkin, I.Antakov, I.Gachev, et al., in: Proc. 23rd Int. Conf. Infrared and Millimeter Waves, Colchester, 1998, p. 323.

  28. S. Sabchevski and T. Idehara, Int. J. Infrared Millimeter Waves, 29, 1 (2008).

    Article  ADS  Google Scholar 

  29. O.Dumbrajs and A.Möbius, Int. J. Electron., 84, No. 4, 411 (1998).

    Article  Google Scholar 

  30. M.Yu.Glyavin, A.G. Luchinin, M.V.Morozkin, and V. I. Khiznyak, Radiophys. Quantum Electron., 51, No. 1, 57 (2008).

    Article  ADS  Google Scholar 

  31. M. Glyavin, V.Khizhnyak, A. Luchinin, et al., Int. J. Infrared Millimeter Waves, 29, No. 7, 641 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Glyavin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 52, No. 7, pp. 557–568, July 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glyavin, M.Y., Idehara, T., Manuilov, V.N. et al. Studies of continuous-wave submillimeter-wave gyrotrons for spectroscopy and diagnostics of various media. Radiophys Quantum El 52, 500–510 (2009). https://doi.org/10.1007/s11141-009-9153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-009-9153-8

Keywords

Navigation