Skip to main content
Log in

Laboratory modeling of nonlinear interaction of Langmuir waves with a magnetoplasma

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of laboratory modeling of the physical processes which lead to smallscale stratification of the ionospheric plasma during active experiments on modification of the ionosphere by high-power radio waves. It is shown that such a stratification can result from thermal self-channeling of Langmuir waves in a magnetoplasma. We established that the selfchanneling is threshold in behavior such that the threshold significantly increases near gyroharmonics. It is demonstrated that in the process of self-channeling, the frequency spectrum of the Langmuir wave is enriched. In particular, spectral maxima are formed, which are shifted away from the carrier frequency by a value of the order of the lower-hybrid frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Sergeev, S. M. Grach, G. P. Komrakov, et al., Radiophys. Quantum Electron., 45, No. 3, 193 (2002).

    Article  Google Scholar 

  2. L. M. Erukhimov, S. A. Metelev, E. N. Myasnikov, et al., Radiophys. Quantum Electron., 30, No. 2, 156 (1987).

    Article  ADS  Google Scholar 

  3. J. Fejer, Rev. Geophys. Space Phys., 17, 135 (1979).

    Article  ADS  Google Scholar 

  4. S. Grach, N. Mityakov, V. Rapoport, and V. Trakhtengertz, Physica D, 2, 102 (1981).

    Article  ADS  Google Scholar 

  5. E. Mjølhus, J. Plasma Phys., 58, 747 (1997).

    Article  ADS  Google Scholar 

  6. V. V. Vas’kov, A. V. Gurevich, in: ed. V. Yu. Trakhtengerts, Thermal Nonlinear Phenomena in Plasmas [in Russian], Inst. Appl. Phys., Niznhy Novgorod (1984), p. 81.

    Google Scholar 

  7. F. Perkins, Radio Sci., 9, 1065 (1974).

    Article  Google Scholar 

  8. S. M. Grach and V. Yu. Trakhtengerts, Radiophys. Quantum Electron., 18, No. 9, 951 (1975).

    Article  Google Scholar 

  9. V. V. Vas’kov and A. V. Gurevich, Sov. Phys. JETP, 42, 91 (1975).

    Google Scholar 

  10. M. V. Starodubtsev, V. V. Nazarov, and A. V. Kostrov, Phys. Rev. Lett., 98, 195001 (2007).

    Article  ADS  Google Scholar 

  11. V. V. Nazarov, M. V. Starodubtsev, and A. V. Kostrov, Phys. Plasmas., 14, 122106 (2007).

    Article  ADS  Google Scholar 

  12. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford (1970).

    Google Scholar 

  13. R. L. Stenzel, Rev. Sci. Instrum., 47, 603 (1976).

    Article  ADS  Google Scholar 

  14. R. K. Fisher and R. W. Gould, Phys. Rev. Lett., 22, 1093 (1969).

    Article  ADS  Google Scholar 

  15. M. V. Starodubtsev, V. V. Nazarov, A. V. Kostrov, and G. V. Permitin, Phys. Rev. E, 72, 026401 (2005).

    Article  ADS  Google Scholar 

  16. V. V. Vas’kov, in: Interaction of HF and VHF Radio Waves with the Ionosphere, [in Russian], IZMIRAN, Moscow (1980), p. 4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Starodubtsev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 11, pp. 988–1003, November 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostrov, A.V., Nazarov, V.V. & Starodubtsev, M.V. Laboratory modeling of nonlinear interaction of Langmuir waves with a magnetoplasma. Radiophys Quantum El 51, 890–903 (2008). https://doi.org/10.1007/s11141-009-9091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-009-9091-5

Keywords

Navigation