Skip to main content
Log in

Active Bragg Compressor of 3-cm Wavelength Microwave Pulses

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of studies of the active compressor of 3-cm wavelength microwave pulses, which uses a high-Q storage Bragg resonator excited at the H01 mode and new types of plasma switches. Phase variation during a compressed pulse and phase correlation of the input and compressed microwave pulses are studied both experimentally and theoretically. Using a single-channel compressor excited at the megawatt power level by the magnicon radiation with frequency 11.4 GHz, a power amplification factor equal to 9 was reached for an output-pulse duration of 40–50 ns and a peak power of up to 25 MW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Didenko and Yu. G. Yushko, Powerful Microwave Nanosecond Pulses [in Russian], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  2. R. Alvarez, D. Birx, D. Byrne, et al., Particle Accelerators, 11, 125 (1981).

    Google Scholar 

  3. Yu. Yu. Danilov, S. V. Kuzikov, V. G. Pavel’ev, et al., Tech. Phys., 75, No. 4, 523 (2005).

    Article  Google Scholar 

  4. A. V. Gaponov-Grekhov and V. L. Granatstein, Applications of High-Power Microwaves, Artech House, London, Boston (1994).

    Google Scholar 

  5. S. G. Tantawi, R. D. Ruth, A. E. Vlieks, et al., in: AIP Conf. Proc., 1997, Vol. 398, Advanced Accelerator Concepts, 7th Workshop, Lake Tahoe, CA (1996), p. 813.

  6. Yu. G. Yushkov, N. N. Badulin, A. P. Batsula, et al., Élektromagn. Voln i Élektron. Sist., 2, No. 6, 71 (1997).

    Google Scholar 

  7. S. G. Tantawi, R. D. Ruth, and A. E. Vlieks, Instrum. Meth. Phys. Res. A, 370, 297 (1996).

    Article  ADS  Google Scholar 

  8. Yu. G. Yushkov, V. A. Avgustinovich, S. N. Artemenko, et al., in: A. G. Litvak. ed., Proc. Int. Workshop “Strong Microwaves in Plasmas,” Vol. 2, Inst. Appl. Phys., Nizhny Novgorod (1997), p. 911.

    Google Scholar 

  9. S. N. Artemenko, V. L. Kaminsky, and Yu. G. Yushkov, Pis’ma v Zh. Tekh. Fiz., 7, No. 24, 1529 (1981).

    Google Scholar 

  10. A. L. Vikharev, N. F. Kovalev, and M. I. Petelin, Tech. Phys. Lett., 22, 795 (1996).

    ADS  Google Scholar 

  11. A. L. Vikharev, A. M. Gorbachev, O. A. Ivanov, et al., Tech. Phys. Lett., 24, No. 10, 791 (1998).

    Article  ADS  Google Scholar 

  12. V. L. Bratman, G. G. Denisov, N. S. Ginzburg, et al., IEEE J. Quant. Electron., 19, No. 3, 282 (1983).

    Article  ADS  Google Scholar 

  13. G. G. Denisov and M. G. Reznikov, Radiophys. Quantum Electron., 25, No. 5, 407 (1982).

    Article  ADS  Google Scholar 

  14. T. Tamir, ed., Integrated Optics, Springer-Verlag, Berlin, Heidelberg, New York (1975).

    Google Scholar 

  15. Yu. Yu. Danilov, S. V. Kuzikov, V. G. Pavel’ev, et al., in: Proc. 7th Int. Workshop on Linear Colliders, Zvenigorod, Russia (1997), Branch INP 97-07, p. 19.

  16. A. Taflove, Advances in Computational Electrodynamics. The Finite-Difference Time-Domain Method, Artech House, Boston, London (1998).

    MATH  Google Scholar 

  17. N. D. Borisov and A. V. Gurevich, Artificial Ionized Region in the Atmosphere [in Russian], IZMIRAN, Moscow (1986).

    Google Scholar 

  18. B. Z. Movshevich, Prib. Tekhn. Eksp., No. 1, 10 (1988).

  19. V. V. Kremnev and G. A. Mesyats, Methods of Multiplication and Transformation of Pulses in High-Current Electronics [in Russian], Nauka, Novosibirsk (1987).

    Google Scholar 

  20. G. A. Mesyats, ed., in: High-Current Pulse Beams and Technologies, Nauka, Novosibirsk (1983).

    Google Scholar 

  21. B. Z. Movshevich, Zh. Tekh. Fiz., 55, No. 5, 824 (1985).

    Google Scholar 

  22. É. P. Asinovsky, L. M. Vasilyak, and V. V. Markovets, Teplofiz. Vys. Temp., 21, No. 3, 577 (1983).

    Google Scholar 

  23. L. M. Vasilyak, S. I. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Sov. Phys. Uspekhi, 37, 247 (1994).

    Google Scholar 

  24. N. B. Anikin, S. M. Starikovskaya, and A. Yu. Starikovskaya, Fiz. Plazmy, 24, No. 1, 9 (1998).

    Google Scholar 

  25. R. A. Alvarez, Rev. Sci. Instrum., 57, No. 10, 2481 (1986).

    Article  ADS  Google Scholar 

  26. A. L. Vikharev, A. M. Gorbachev, O. A. Ivanov, et al., in: AIP Conf. Proc., 2005, Vol. 47, High Energy Density and High Power RF, p. 463.

  27. A. L. Vikharev, A. M. Gorbachev, O. A. Ivanov, et al., Radiophys. Quantum Electron., 46, No. 10, 802 (2003).

    Article  ADS  Google Scholar 

  28. S. H. Gold, O. A. Nezhevenko, V. P. Yakovlev, et al., AIP Conf. Proc. 1999, Vol. 474, High Energy Density Microwaves, p. 179.

  29. O. A. Nezhevenko, V. P. Yakovlev, J. L. Hirshfield, et al., in: A. Luccio and W. MacKay, ed., Proc. of the 1999 Particle Accelerator, Vol. 2, IEEE, Piscataway, New Jersey (2000), p. 1049.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Vikharev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 7, pp. 597–616, July 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vikharev, A.L., Gorbachev, A.M., Ivanov, O.A. et al. Active Bragg Compressor of 3-cm Wavelength Microwave Pulses. Radiophys Quantum El 51, 539–555 (2008). https://doi.org/10.1007/s11141-008-9053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-008-9053-3

Keywords

Navigation