Skip to main content
Log in

Theoretical and experimental study of blurring of a femtosecond laser pulse in a turbid medium

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We propose an analytical model of the spatio-temporal structure of a short laser pulse transmitted through a layer of an optically inhomogeneous medium with high anisotropy of scattering. The light-field brightness in the medium is represented as a finite series in terms of multiplicities of the small-angle scattering, while the contribution from the higher-order scattering is allowed for as a quasi-diffuse component. The scattered-pulse structure is calculated on the basis of solving the radiative-transfer equation in the small-angle approximation with allowance for the effect of multipath light propagation. Compared with the first approximation of the multiple-scattering theory (attenuated nonscattered light plus the diffuse component), this approach makes it possible to describe more correctly the transformation of the spatio-angular distribution of light in the medium when passing from the single-scattering to multiple-scattering regime, as well as specify the temporal profile of the scattered pulse. The temporal profile of the femtosecond pulse transmitted through a layer of model scattering medium with various concentrations of scatterers is studied experimentally. The blurred-pulse structure is studied with the help of nonlinear optical gating in the case of noncollinear generation of the second harmonic. Good agreement between the theoretical and experimental time profiles of the scattered pulse is shown for the optical-thickness intervals corresponding to both the predominantly low multiplicity scattering and multiple small-angle scattering, which allows us to use the proposed analytical model for solving the inverse problem of the pulse sounding of a homogeneous turbid medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications, Krieger, Malabar, Fla (1992).

    Google Scholar 

  2. V. I. Feigels and Y. I. Kopilevich, eds., Proc. SPIE, Laser Remote Sensing in Natural Water: From Theory to Practice, 2964 (1996).

  3. Sh. Aoshima, M. Fujimoto, M. Hosodaet et al., in: Proc. SPIE, High-Power Laser Ablation II, 3885, 461 (2000).

    ADS  Google Scholar 

  4. S. Svanberg, Meas. Sci. Technol., 12, 1777 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Baigar, C. Hauger, and W. Zinth, J. Appl. Phys. B, 67, No. 2, 257 (1998).

    Article  ADS  Google Scholar 

  6. K. M. Yoo, Q. Xing, and R. R. Alfano, Opt. Lett., 16, No. 13, 1019 (1991).

    Article  ADS  Google Scholar 

  7. A. Kuditcher, B. G. Hoover, M. P. Hehlen et al., Appl. Opt., 40, No. 1, 45 (2001).

    Article  ADS  Google Scholar 

  8. K. Hatanaka, T. Itoh, and T. Asahi, Appl. Phys. Lett., 73, No. 24, 3498 (1998).

    Article  ADS  Google Scholar 

  9. W. Denk, J. H. Strickler, and W. W. Webb, Science, 248, No. 4951, 73 (1990).

    Article  ADS  Google Scholar 

  10. A. Bindewald-Wittich, M. Han, S. Schmitz-Valckenberg, et al., Investigat. Ophthalmol. Vis. Sci., 47, No. 10, 4553 (2006).

    Article  Google Scholar 

  11. G. J. Brakenhoff, J. Squier, T. Norris, et al., J. Microsc., 181, No. 3, 253 (1996).

    Article  Google Scholar 

  12. W. Drexler, J. Biomed. Opt., 9, No. 1, 47 (2004).

    Article  ADS  Google Scholar 

  13. V. V. Tuchin, ed., Handbook of Coherent Domain Optical Methods: Biomedical Diagnostics, Environment and Material Science, Kluwer, Dordrecht (2004).

    Google Scholar 

  14. P. Theer, M. T. Hasan, and W. Denk, Opt. Lett., 28, No. 12, 1022 (2003).

    Article  ADS  Google Scholar 

  15. A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York (1978).

    Google Scholar 

  16. É. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer in a Scattering Medium [in Russian], Nauka i Tekhnika, Minsk (1985).

    Google Scholar 

  17. S. A. Tereshchenko, V. M. Podgaetskii, N. S. Vorob’ev, and A. V. Smirnov, Quantum Electron., 28, No. 9, 831 (1998).

    Article  Google Scholar 

  18. N. S. Vorob’ev, V. M. Podgaetskii, A. V. Smirnov, and S. A. Tereshchenko, Quantum Electron., 29, No. 8, 737 (1999).

    Article  Google Scholar 

  19. L. S. Dolin, Radiophys. Quantum Electron., 9, No. 1, 40 (1966).

    ADS  Google Scholar 

  20. A. A. Kokhanovsky, J. Phys. D, 30, No. 20, 2837 (1997).

    Article  ADS  Google Scholar 

  21. L. S. Dolin, Radiophys. Quantum Electron., 26, No. 3, 220 (1983).

    Article  ADS  Google Scholar 

  22. J. W. McLean, J. D. Freeman, and R. E. Walker, Appl. Opt., 37, No. 21, 4701 (1998).

    Article  ADS  Google Scholar 

  23. J. N. Winn, L. T. Perelman, K. Chen, et al., Appl. Opt., 37, No. 34, 8085 (1998).

    Article  ADS  Google Scholar 

  24. R. E. Walker and J. W. McLean, Appl. Opt., 38, No. 12, 2384 (1999).

    Article  ADS  Google Scholar 

  25. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics, Vols. 3 and 4, Springer-Verlag, Berlin (1988).

    MATH  Google Scholar 

  26. J. Kim and J. C. Lin, IEEE Trans. Biomed. Eng., 45, No. 4, 505 (1998).

    Article  Google Scholar 

  27. I. Turcu, J. Opt. A, 6, No. 6, 537 (2004).

    Google Scholar 

  28. L. S. Dolin, Dokl. Akad. Nauk SSSR, 260, 1344 (1981).

    ADS  Google Scholar 

  29. K. M. Yoo and R. R. Alfano, Opt. Lett., 15, No. 6, 320 (1990).

    ADS  Google Scholar 

  30. M. R. Hee, J. A. Izatt, E. A. Swanson, et al., Opt. Lett., 18, No. 13, 1107 (1993).

    ADS  Google Scholar 

  31. F. Liu, K. M. Yoo, and R. R. Alfano, Appl. Opt., 32, No. 4, 554 (1993).

    ADS  Google Scholar 

  32. E. L. Sergeeva, M. Yu. Kirillin, and A. V. Priezzhaev, Quantum Electron, 36, No. 11, 1023 (2006).

    Article  Google Scholar 

  33. I. V. Turchin, E. A. Sergeeva, L. S. Dolin, et al., J. Biomed. Opt., 10, No. 6, 064024 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sergeeva.

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 4, pp. 333–348, April 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeeva, E.A., Korytin, A.I. Theoretical and experimental study of blurring of a femtosecond laser pulse in a turbid medium. Radiophys Quantum El 51, 301–314 (2008). https://doi.org/10.1007/s11141-008-9031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-008-9031-9

Keywords

Navigation