Some distinctive features in the behavior of small-scale artificial ionospheric irregularities at mid-and high latitudes

Abstract

We present the results of experimental studies of some features in the behavior of small-scale artificial irregularities (SSAIs) at mid-and high latitudes based on the “Sura” and EISCAT/HEATING HF facilities. Observations were performed by the method of aspect scattering using a network of diagnostic paths having a common reception point located near St. Petersburg. We found that an extremely long duration of the second (slow) stage of SSAI relaxation of up to 5 min occurs in the evening hours when the ionosphere above the “Sura” facility is illuminated by the Sun, but the solar terminator travels through the magnetically conjugated ionosphere. The conjecture is made that the processes initiated by the terminator are mostly responsible for secondary ionospheric turbulence maintaining the irregularities above “Sura.” A drastic increase in the Doppler spectra width of the scattered signals is revealed when the magnetically conjugate point of the ionosphere is located on the shade side of the terminator, but the ionosphere above the “Sura” facility is still lighted. It is assumed that the “ run away” of photoelectrons from the day to the night side could reduce the threshold of excitation of artificial irregularities, leading to an increase in their intensity. The presence of fairly intense scattered signals was detected from the “Sura” and EISCAT/HEATING experimental results both under conditions of pulsed HF heating after continuous heater-on periods and cycled HF heating by short pulses. In the case of pulsed heating by short pulses with duration τp < 100 ms and average radiated power Pa below the threshold power Pthr of the SSAI generation cutoff the irregularities can be maintained due only to striction parametric instabilities. The excitation of irregularites under the cycled HF pumping with the pulse duration τp = 384 ms for Pa comparable with Pthr was detected. The aspect-angle dependence, or the so-called magnetic zenith effect, was found in the SSAI intensity. The residual turbulence aftereffects played a significant role in the SSAI development.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Minkoff, M. Laviola, S. Abrams, and D. Porter, Radio Sci., 9, 957 (1974).

    ADS  Google Scholar 

  2. 2.

    G. D. Thome, Radio Sci., 9, 917 (1974).

    ADS  Google Scholar 

  3. 3.

    G. G. Getmantsev, L. M. Erukhimov, N. A. Mityakov, et al., Radiophys. Quantum Electron., 19, No. 12, 1327 (1976).

    Article  ADS  Google Scholar 

  4. 4.

    A. F. Belenov, V. A. Bubnov, L. M. Erukhimov, et al., Radiophys. Quantum Electron., 20, No. 12, 1240 (1977).

    Article  ADS  Google Scholar 

  5. 5.

    V. B. Avdeev, V. S. Beley, A. F. Belenov, et al., Radiophys. Quantum Electron., 37, No. 4, 299 (1994).

    Article  ADS  Google Scholar 

  6. 6.

    V. L. Frolov, L. M. Erukhimov, S. A. Metelev, and E. N. Sergeev, Atmos. Sol.-Terr. Phys., 59, 2317 (1997).

    Article  ADS  Google Scholar 

  7. 7.

    A. J. Coster, F. T. Djuth, R. J. Jost, and W. E. Gordon, J. Geophys. Res., 90, 2807 (1985).

    ADS  Article  Google Scholar 

  8. 8.

    M. C. Kelley, T. L. Arce, J. Salowey, et al., J. Geophys. Res., 100, 17367 (1995).

    Article  ADS  Google Scholar 

  9. 9.

    N. F. Blagoveshchenskaya, V. A. Kornienko, A. V. Petlenko, et al., Ann. Geophys., 16, 1212 (1998).

    Article  ADS  Google Scholar 

  10. 10.

    M. T. Rietveld, M. J. Kosch, N. F. Blagoveshchenskaya, et al., J. Geophys. Res., 108, doi: 10.1029/2002JA009543 (2003).

  11. 11.

    N. F. Blagoveshchenskaya, T. D. Borisova, V. A. Kornienko, et al., Adv. Space Res., 38, 2503 (2006).

    Article  ADS  Google Scholar 

  12. 12.

    N. F. Blagoveshchenskaya, Geophysical Effects of Active Actions in Circumterrestrial Space [in Russian], Gidrometeoizdat, St. Petersburg (2001).

    Google Scholar 

  13. 13.

    N. F. Blagoveshchenskaya and O. A. Troshichev, J. Atmos. Sol.-Terr. Phys., 58, 397 (1996).

    Article  ADS  Google Scholar 

  14. 14.

    V. V. Vas’kov and A. V. Gurevich, Sov. Phys. JETP, 42, No. 1, 91 (1976).

    Google Scholar 

  15. 15.

    A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radiowave Propagation [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  16. 16.

    S. M. Grach and V. Yu. Trakhtengerts, Radiophys. Quantum Electron., 18, No. 9, 951 (1975).

    Article  ADS  Google Scholar 

  17. 17.

    A. V. Gurevich, A. V. Lukyanov, and K. P. Zybin, Phys. Lett. A, 206, 247 (1995).

    Article  ADS  Google Scholar 

  18. 18.

    T. L. Franz, M. C. Kelley, and A. V. Gurevich, Radio Sci., 34, 465 (1999).

    Article  ADS  Google Scholar 

  19. 19.

    A. V. Gurevich, H. Carlson, and K. P. Zybin, Phys. Lett. A, 288, 231 (2001).

    Article  ADS  Google Scholar 

  20. 20.

    A. N. Karashtin, G. P. Komrakov, Yu. V. Tokarev, and Yu. V. Shlyugaev, Radiophys. Quantum Electron., 42, No. 8, 674 (1999).

    Article  ADS  Google Scholar 

  21. 21.

    M. T. Rietveld, H. Kohl, H. Kopka, and P. Stubbe, J. Atmos. Sol.-Terr. Phys., 55, 577 (1993).

    Article  ADS  Google Scholar 

  22. 22.

    D. L. Hysell, M. C. Kelley, Y. M. Yampolski, et al., J. Geophys. Res., 101, 26981 (1996).

    Article  ADS  Google Scholar 

  23. 23.

    Y. M. Yampolski, V. S. Beley, S. B. Kascheev, et al., J. Geophys. Res., 102, 7461 (1997).

    Article  ADS  Google Scholar 

  24. 24.

    Yu. M. Yampol’sky, Izv. Vyssh. Ucheb. Zaved., Radiofiz., 32, 519 (1989).

    Google Scholar 

  25. 25.

    L. M. Erukhimov, S. A. Metelev, N. A. Mityakov, and V. L. Frolov, Radiophys. Quantum Electron., 21, No. 12, 1209 (1978).

    Article  ADS  Google Scholar 

  26. 26.

    T. D. Borisova, N. F. Blagoveshchenskaya, I. V. Moskvin, et al., Ann. Geophys., 20, 1479 (2002).

    ADS  Google Scholar 

  27. 27.

    L. M. Erukhimov, S. A. Metelev, E. N. Myasnikov, et al., Radiophys. Quantum Electron., 30, No. 2, 156 (1987).

    Article  ADS  Google Scholar 

  28. 28.

    L. M. Kagan and V. L. Frolov, J. Atmos. Sol.-Terr. Phys., 58, 1465 (1996).

    Article  ADS  Google Scholar 

  29. 29.

    V. L. Frolov, G. G. Vertogradov, and V. G. Vertogradov, Radiophys. Quantum Electron. [in press].

  30. 30.

    N. I. Izhovkina, I. S. Prutensky, S. A. Pulinets, et al., Geomagn. Aeron., 46, No. 6, 717 (2006).

    Article  ADS  Google Scholar 

  31. 31.

    J. Doering, W. Peterson, C. Bostrom, and J. Armstrong, J. Geophys. Res., 80, 3934 (1975).

    ADS  Google Scholar 

  32. 32.

    W. Peterson, J. Doering, T. Potemra, et al., Geophys. Res. Lett., 4, 109 (1977).

    ADS  Google Scholar 

  33. 33.

    E. N. Sergeev, S. M. Grach, and P. V. Kotov, Radiophys. Quantum Electron., 47, No. 3, 185 (2004).

    Article  ADS  Google Scholar 

  34. 34.

    N. F. Blagoveshchenskaya, T. D. Borisova, V. A. Kornienko, et al., Ann. Geophys., 24, 2333 (2006).

    ADS  Article  Google Scholar 

  35. 35.

    V. L. Frolov, Radiophys. Quantum Electron., 31, No. 10, 1164 (1988).

    Article  Google Scholar 

  36. 36.

    G. N. Boiko, L. M. Erukhimov, and V. L. Frolov, Geomagn. Aeron., 30, No. 6, 843 (1990).

    Google Scholar 

  37. 37.

    V. A. Zyuzin, G. P. Komrakov, and A. N. Nasyrov, Geomagn. Aéronom, 27, 942 (1987).

    ADS  Google Scholar 

  38. 38.

    V. L. Frolov, G. P. Komrakov, D. I. Nedzvetsky, et al., Radiophys. Quantum Electron., 49, No. 8, 579 (2006).

    Article  ADS  Google Scholar 

  39. 39.

    M. T. Rietveld, M. J. Kosch, N. G. Blagoveshchenskaya, et al., J. Geophys. Res., 109, doi: 10.1029/2004JA010460 (2004).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. F. Blagoveshchenskaya.

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 8, pp. 678–694, August 2007.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blagoveshchenskaya, N.F., Borisova, T.D., Kornienko, V.A. et al. Some distinctive features in the behavior of small-scale artificial ionospheric irregularities at mid-and high latitudes. Radiophys Quantum El 50, 619–632 (2007). https://doi.org/10.1007/s11141-007-0054-4

Download citation

Keywords

  • Conjugate Point
  • Scattered Signal
  • Pulse Heating
  • Doppler Spectrum
  • Ionospheric Irregularity