Skip to main content
Log in

Chaotic synchronization in ensembles of coupled neurons modeled by the FitzHugh-Rinzel system

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We consider various networks of diffusively coupled identical neurons modeled by a system of FitzHugh-Rinzel coupled differential equations. The mathematical model of a solitary nerve cell is analyzed theoretically and numerically. Regions corresponding to the qualitatively different behavior of a neuron are separated in the parameter space of the system. We present synchronization conditions in a network in which the central element modeling the pacemaking neuron is linked to the group of uncoupled neurons (star configuration). Within the framework of the connection graph stability method [1], which allows us to determine the character of variation in the threshold values of the coupling strengths sufficient for establishing the complete-synchronization regime, we study the influence of the network structure on the synchronization thresholds in different ensembles. In particular, we consider a configuration in the form of diffusively coupled stars structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Belykh, I. V. Belykh, and M. Hasler, Physica D, 195, 159 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Fundamental Concept in Nonlinear Sciences, Cambrdge Univ. Press, New York (2001).

    Google Scholar 

  3. S. Boccaletti, J. Kurths, G. Osipov, et al., Phys. Rep., 366, 1 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. C. Sparrow, The Lorenz Equations, Bifurcations, Chaos, and Strange Attractors, Springer-Verlag, New York (1982).

    MATH  Google Scholar 

  5. O. E. Roessler, Phys. Lett. A, 57, 397 (1976).

    Article  ADS  Google Scholar 

  6. P. R. Shorten and D. J. Wall, Bull. Math. Biol., 62, No. 4, 695 (2000).

    Article  Google Scholar 

  7. I. Belykh, E. Lange, and M. Hasler, Phys. Rev. Lett., 94, 188101 (2005).

    Google Scholar 

  8. V. N. Belykh, I. V. Belykh, M. Colding-Jorgensen, and E. Mosekilde, Eur. Phys. J. E, 3, 205 (2000).

    Article  Google Scholar 

  9. E. Izhikevich, Int. J. Bifurcation and Chaos., 10, 1171 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Rinzel, in: Lecture Notes in Biomath. Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences, Vol. 71 Springer-Verlag, Berlin, 267 (1987).

    Google Scholar 

  11. E. Izhikevich, SIAM Review, 43, 315 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  12. C. A. Del Negro, C.-F. Hsiao, S. H. Chandler and A. Garfinkel, Biophys. J., 75, 174 (1998).

    Article  Google Scholar 

  13. F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, New York (1973).

    MATH  Google Scholar 

  14. N. N. Bautin, The Behavior of Dynamical Systems near the Boundaries of the Domain of Stability [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  15. V. N. Belykh and Yu. S. Chertkov, in: Boundary-Value Problems. Collection of Papers [in Russian], Perm’ Polytech. Inst., Perm’ (1980), p. 120.

    Google Scholar 

  16. I. Belykh, M. Hasler, M. Lauret, and H. Nijmeijer, Int. J. Bifurcation and Chaos., 15, No. 11, 3423 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  17. V. N. Belykh, I. V. Belykh, and M. Hasler, Physica D, 195, 188 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 11, pp. 1002–1014, November 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belykh, V.N., Pankratova, E.V. Chaotic synchronization in ensembles of coupled neurons modeled by the FitzHugh-Rinzel system. Radiophys Quantum Electron 49, 910–921 (2006). https://doi.org/10.1007/s11141-006-0124-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-006-0124-z

Keywords

Navigation