Skip to main content
Log in

Dissipative instability of charged aerosol flows in the mesosphere

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We consider the possible mechanism of generation of charged-particle density irregularities and electric field in the middle atmosphere based on the development of the dissipative instability of a flow of large charged aerosols. A dispersion equation describing the properties of the spectral component of a quasi-static electric field with allowance for the aerosol charging inertia is obtained. This equation is used to study characteristics of the instability threshold. It is shown that the charging inertia and the presence of photoelectrons lead to an increase and a decrease in the threshold plasma frequency of the aerosols, respectively. It is found that there exist optimal combinations of such parameters as the radius of spherical aerosols and the mass of heavy ion clusters for which the instability threshold is minimum. It is also shown that the instability threshold is lower for the particles stretched along the motion direction. Quantitative estimates are given for medium parameters necessary for the excitation of instability in the region of existence of polar mesospheric summer echo as well as for spatial scales of unstable perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Tsytovich, Phys. — Uspekhi, 167, No. 1, 53 (1997).

    Article  Google Scholar 

  2. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, et al., Phys. — Uspekhi, 174, No. 5, 447 (2004).

    Article  Google Scholar 

  3. D. B. Macgorman and W. D. Rust, The Electrical Nature of Storms, Oxford Univ. Press (1998).

  4. J. Y. N. Cho, and J. Rottger, J. Geophys. Res., 102, 2 001 (1997).

    Article  ADS  Google Scholar 

  5. M. Rapp and F. J. Lübken, Atmos. Phys. Chem. Discuss., 4, 4 777 (2004).

    Google Scholar 

  6. V. Yu. Trakhtengerts, Dokl. Akad. Nauk SSSR, 308, No. 3, 584 (1989).

    Google Scholar 

  7. E. A. Mareev, A. E. Sorokin, and V. Yu. Trakhtengerts, Fiz. Plazmy, 25, No. 3, 289 (1999).

    Google Scholar 

  8. V. S. Grach, A. G. Demekhov, and V. Yu. Trakhtengerts, Radiophys. Quantum Electron., 48, No. 6, 435 (2005).

    Article  ADS  Google Scholar 

  9. V. Yu. Trakhtengerts, J. Atmos. Terr. Phys., 56, No. 3, 337 (1994).

    Article  ADS  Google Scholar 

  10. V. M. Tsytovich and O. Havnes, in: CP649, Dusty Plasmas in the Millenium: Third International Conference on the Physics of Dusty Plasmas, American Institute of Physics (2002), p. 454.

  11. A. V. Gaponov-Grekhov and V. Yu. Trakhtengerts, JETP Lett., 80, No. 11, 687 (2004).

    Article  Google Scholar 

  12. G. E. Morfill, V. N. Tsytovich, and H. Thomas, Plasma Phys. Rep., 29, No. 1, 1 (2003).

    Article  Google Scholar 

  13. V. N. Tsytovich, G. E. Morfill, and H. Thomas, Plasma Phys. Rep., 28, No. 8, 623 (2002).

    Article  Google Scholar 

  14. F. Lübken, M. Rapp, and P. Hoffmann, J. Geophys. Res. D, 107, No. 15, 4 273 (2002).

    Article  Google Scholar 

  15. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radiowaves in the Ionosphere [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  16. E. Kopp, P. Eberhardt, U. Herrmann, and L. Bjorn, J. Geophys. Res., 90, 13 041 (1985).

    Google Scholar 

  17. J. Gumbel and G. Witt, Geophys. Res. Lett., 29, No. 16, doi:10.1029/2002GL015146 (2002).

  18. L. G. Bjorn and F. Arnold, Geophys. Res. Lett., 8, 1 167 (1981).

    ADS  Google Scholar 

  19. S. I. Akasofu and S. Chapman, Solar-Terrestrial Physics, Oxford University Press, Oxford (1972).

    Google Scholar 

  20. F. Lübken and M. Rapp, J. Atmos. Sol.-Terr. Phys., 63, 771 (2001).

    Article  ADS  Google Scholar 

  21. J. S. Lee, J. P. Doering, T. A. Potemra, and L. H. Brace, “Measuruments of the ambient photoelectron spectrum from atmosphere explorer: I. AE-E measuruments below 300 km during solar minimum conditions,” a preprint (1979).

  22. S. A. Maiorov, Plasma Phys. Rep., 30, No. 9, 766 (2004).

    Article  Google Scholar 

  23. J. F. Carbary, D. Morrison, and G. J. Romick, Geophys. Res. Lett., 31, L13108 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 11, pp. 942–957, November 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grach, V.S., Demekhov, A.G. & Trakhtengerts, V.Y. Dissipative instability of charged aerosol flows in the mesosphere. Radiophys Quantum Electron 49, 851–865 (2006). https://doi.org/10.1007/s11141-006-0120-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-006-0120-3

Keywords

Navigation