Skip to main content
Log in

Study of the dielectric properties of water in the frequency range 75–120 GHz

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We study experimentally the frequency dependences of the refractive index n and the absorption coefficient k of distilled, sea, and river water. The measurements were performed using a quasioptical device with a backward-wave oscillator as the radiation source and OAP-7 optical-acoustic receivers at a water temperature of 27°C in the cell. The quantities n and k were determined from the measured transmission and reflection coefficients of the cell with water by means of joint numerical solution of the equations for these quantities. For distilled water in the frequency range f = 75–120 GHz, we obtained n = 6.142–3.926 · 10–2f[GHz] + 1.307 · 10–4(f[GHz])2 and k = 3.607–2.101 · 10−2 f[GHz] + 5.252 · 10–5(f[GHz])2. On the whole, these data are in good agreement with the measurement results obtained by other authors at several frequencies of the indicated range and coincide with the calculation data based on the models by Meissner and Wentz and by Liebe et al. within the limits of the rms determination errors 0.05 and 0.02 for the parameters n and k, respectively. The values of n and k for different seawater samples and river water containing insoluble admixtures coincide with the values of these quantities for distilled water within the limits of the experimental measurement errors 3–5% and 1–2%, respectively. The dependences n(f) and k(f) obtained experimentally for seawater are compared with those calculated on the basis of the developed models.

Measurements of the transmission spectrum of a cell with double distilled water were performed for low power density of radiation (less than µW/cm2) to reproduce the effect of water resonant transparency reported many times in the literature. Our measurements did not reveal any resonant features in the spectral behavior of the refractive index n and the absorption coefficient k of water and gave the same result as for a power density exceeding the threshold of appearance of this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Aivazyan, Propagation of Millimeter and Submillimeter Waves in Clouds [in Russian], Gidrometeoizdat, Leningrad (1991).

    Google Scholar 

  2. B. D. Bursulaya and H. J. Kim, J. Chem. Phys., 109, No. 12, 4911 (1998).

    Article  ADS  Google Scholar 

  3. C. Ronne, P.-O. Astrand, and S. R. Keiding, Phys. Rev. Lett., 82, No. 14, 2888 (1999).

    Article  ADS  Google Scholar 

  4. Ch. M. Briskina, V. I. Gaiduk, and B. M. Tseitlin, J. Commun. Technol. Electron., 49, No. 7, 742 (2004).

    Google Scholar 

  5. T. Meissner and F. J. Wentz, IEEE Trans. Geosci. Remote Sensing, 42, No. 9, 1836 (2004).

    Article  ADS  Google Scholar 

  6. Yu. I. Malyshenko and I. Kh. Vakser, Ukrain. Fiz. Zh., 15, No. 9, 1496 (1970).

    Google Scholar 

  7. P. S. Ray, Appl. Opt., 11, No. 8, 1836 (1972).

    Article  ADS  Google Scholar 

  8. P. R. Mason, J. B. Hasted, and L. Moore, Adv. Molec. Relax. Proces., 6, 217 (1974).

    Article  Google Scholar 

  9. U. Kaatze and V. Uhlendorf, Z. Phys. Chem. Neue Folge, 126, No. 2, 151 (1981).

    Google Scholar 

  10. H. J. Liebe, G. A. Hufford, and T. Manabe, Int. J. Infrared Millimeter Waves, 12, No. 7, 659 (1991).

    Article  ADS  Google Scholar 

  11. P. J. W. Debye, Polar Molecules, Dover, New York (1960).

    MATH  Google Scholar 

  12. L. A. Klein and C. T. Swift, IEEE Trans. Antennas Propagat., AP-25, No. 1, 104 (1977).

    Article  ADS  Google Scholar 

  13. A. M. Shutko, Microwave Radiometry of the Water Surface and Soil Grounds [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  14. A. Stogryn, IEEE Trans. Microwave Theory Tech., MTT-19, No. 8, 733 (1971).

    Article  Google Scholar 

  15. W. Ellison, A. Balana, G. Delbos, et al., Radio Sci., 33, No. 3, 639 (1998).

    Article  ADS  Google Scholar 

  16. C. Guillou, W. Ellison, L. Eymard, et al., Radio Sci., 33, No. 3, 649 (1998).

    Article  ADS  Google Scholar 

  17. V. I. Petrosyan, Yu.V. Gulyaev, É. A. Zhiteneva, et al., Radiotekh. Élektron., 40, No. 1, 127 (1995).

    Google Scholar 

  18. Yu.V. Gulyaev, N. I. Sinitsyn, V. I. Petrosyan, et al., in: Interinst. Conf. “Modern Problems of Microwave Electronics and Radiophysics,” Saratov, 2001 [in Russian], p. 36.

  19. E. M. Gershenzon, M. B. Golant, A. A. Negirev, and V. S. Savel’ev, Backward-Wave Oscillators of Millimeter-and Submillimeter-Wave Ranges [in Russian], Radio i Svyaz’, Moscow (1985).

    Google Scholar 

  20. N. I. Furashov, in: 1st Ukrainian Symp. “Physics and Techniques of Millimeter and Submillimeter Radio Waves, Kharkov, 1991 [in Russian], Pt. 2, p. 36.

  21. L. M. Brekhovskikh, Waves in Layered Media, Academic Press, New York (1960).

    MATH  Google Scholar 

  22. V. Sarafanov, Usp. Fiz. Nauk, 55, No. 1, 127 (1955).

    Google Scholar 

  23. M. N. Afsar and K. J. Button, Proc. IEEE, 73, No. 1, 131 (1985).

    Article  Google Scholar 

  24. J. W. Lamb, Int. J. Infrared Millimeter Waves, 17, No. 12, 1997 (1996).

    Article  ADS  Google Scholar 

  25. V. E. Dudin, B. A. Sverdlov, and N. I. Furashov, in: Int. Symp. of the Commonwealth of Independent States “Atmospheric Radiation,” St.Petersburg, 2004 [in Russian], p. 15.

  26. M. D. Blue, J. Geophys. Res. C, 85, No. 2, 1101 (1980).

    Article  ADS  Google Scholar 

  27. R. W. Rampolla, R. C. Miller, and C. P. Smyth, J. Chem. Phys., 30, No. 2, 566 (1959).

    Article  ADS  Google Scholar 

  28. T. Manabe, H. J. Liebe, and G. A. Hufford, in: 12th Int. Conf. on Infrared and Millimeter Waves, Lake Buena Vista (Orlando), Fla., December 14–18, 1987, p. 229.

  29. K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341 (1941).

    Article  ADS  Google Scholar 

  30. A. P. Stogryn, H. T. Bull, K. Rubayi, and S. Iravanchy, The Microwave Permittivity of Sea and Fresh Water, Gen. Corp. Aerojet, Azusa, Ca. (1995).

    Google Scholar 

  31. J. Lane and J. Saxon, Proc. Roy. Soc. A, 213, 531 (1952).

    Article  ADS  Google Scholar 

  32. R. Buchner, G. T. Heffer, and J. Barthel, J. Chem. Soc. Faraday Trans., 90, 2475 (1994).

    Article  Google Scholar 

  33. N. I. Sinitsyn, V. I. Petrosyan, V. A. Elkin, et al., Biomed. Radioélektron., No. 1, 5 (1998).

  34. V. I. Petrosyan, N. I. Sinitsyn, V. A. Elkin, et al., Élektron. Prom., No. 1, 99 (2000).

  35. V. I. Petrosyan, N. I. Sinitsyn, V. A. Elkin, et al., Biomed. Radioélektron., No. 1, 34 (2000).

  36. N. I. Sinitsyn, V. I. Petrosyan, and V. A. Elkin, Radiotekhnika, No. 8, 83 (2000).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 6, pp. 489–501, June 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furashov, N.I., Dudin, V.E. & Sverdlov, B.A. Study of the dielectric properties of water in the frequency range 75–120 GHz. Radiophys Quantum Electron 49, 442–452 (2006). https://doi.org/10.1007/s11141-006-0076-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-006-0076-3

Keywords

Navigation