Skip to main content
Log in

Numerical simulation of dynamic processes in gyrotrons with low-Q cavities

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We study theoretically models of gyrotrons having fixed and self-consistent axial structures of the high-frequency field in the cavity with an actual profile. The limits of applicability of the model with a given field structure are determined during the study of competition of the operating and parasitic modes. It is shown that for the regimes which are optimal in terms of efficiency, the influence of the nonfixed nature of the high-frequency field structure on the starting current, the stability of stationary generation of the operating mode, the efficiency, the output power, and the thermal ohmic load of the cavity is insignificant. As the beam current and the mismatch between the cutoff frequencies of the operating and parasitic modes increase, significant qualitative differences between the models with given and self-consistent axial structures of the high-frequency field are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Vlasov, G. M. Zhislin, I. M. Orlova, et al., Radiophys. Quantum Electron., 12, No. 8, 872 (1969).

    Google Scholar 

  2. A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys. Quantum Electron., 10, Nos. 9–10, 794 (1967).

    Google Scholar 

  3. A. V. Gaponov, A. L. Gol’denberg, D. P. Grigor’ev, et al., Radiophys. Quantum Electron., 18, No. 2, 204 (1975).

    Article  Google Scholar 

  4. V. K. Yulpatov, in: Gyrotron, Collection of Papers [in Russian], Inst. Appl. Phys., Gorky (1981), p. 26.

    Google Scholar 

  5. V. E. Zapevalov, Yu. K. Kalynov, A. N. Kuftin, et al., Radiophys. Quantum Electron., 37, No. 3, 233 (1994).

    Article  Google Scholar 

  6. V. L. Bratman and M. I. Petelin, Radiophys. Quantum Electron., 18, No. 10, 1336 (1975).

    Article  Google Scholar 

  7. G. I. Zarudneva, Yu. K. Kalynov, and S. A. Malygin, Radiophys. Quantum Electron., 31, No. 3, 254 (1988).

    Article  Google Scholar 

  8. V. L. Bratman, M. A. Moiseev, M. I. Petelin, and R. É. Érm, Radiophys. Quantum Electron., 16, No. 4, 474 (1973).

    Article  Google Scholar 

  9. V. L. Bratman, S. L. Novozhilov, and M. I. Petelin, Élektron. Tekh., Ser. Élektron. SVCh, No. 11, 46 (1976).

  10. G. S. Nusinovich and R. E. Érm, Élektron. Tekhn., Ser. Élektron. SVCh, No. 8, 55 (1972).

  11. A. A. Kuraev, I. S. Kovalev, and S. V. Kolosov, Numerical Optimization Methods in the Problems of Microwave Electronics [in Russian], Nauka i Tekhnika, Minsk (1975).

    Google Scholar 

  12. A. A. Kuraev, V. B. Baiburin, and E. M. Il’in, Mathematical Models and Methods of Optimal Design of Microwave Devices [in Russian], Nauka i Tekhnika, Minsk (1990).

    Google Scholar 

  13. I. G. Zarnitsyna and G. S. Nusinovich, Radiophys. Quantum Electron., 18, No. 2, 223 (1975).

    Article  Google Scholar 

  14. N. S. Ginzburg, G. S. Nusinovich, and N. A. Zavolsky, Int. J. Electron., 61, No. 6, 881 (1986).

    Google Scholar 

  15. S. Y. Cai, T. M. Antonsen, Jr., G. Saraph, and B. Levush, Int. J. Electron., 72, Nos. 5–6, 759 (1992).

    Google Scholar 

  16. Cyclotron Resonance Masers. Topical Index (1958–1980) [in Russian], Inst. Appl. Phys., Gorky (1983).

  17. G. S. Nusinovich, Introduction to the Physics of Gyrotrons, The John Hopkins University Press, Baltimore (2004).

    Google Scholar 

  18. V. E. Zapevalov, G. G. Denisov, V. A. Flyagin, et al., Plasma Devices Oper., 6, 111 (1998).

    Google Scholar 

  19. V. E. Zapevalov, G. G. Denisov, V. A. Flyagin, et al., Fusion Eng. Design, 53, Nos. 1–4, 377 (2000).

    Google Scholar 

  20. M. A. Moiseev, L. L. Nemirovskaya, V. E. Zapevalov, and N. A. Zavolsky, Int. J. Infrared Millimeter Waves, 18, No. 11, 2117 (1997).

    Google Scholar 

  21. V. L. Bratman, N. S. Ginzburg, G. S. Nusinovich, et al., Int. J. Electron., 51, No. 4, 541 (1981).

    Google Scholar 

  22. A. N. Kuftin, V. K. Lygin, V. N. Manuilov, et al., Int. J. Infrared Millimeter Waves, 20, No. 3, 361 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 4, pp. 307–320, April 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavolsky, N.A., Zapevalov, V.E. & Moiseev, M.A. Numerical simulation of dynamic processes in gyrotrons with low-Q cavities. Radiophys Quantum Electron 49, 275–287 (2006). https://doi.org/10.1007/s11141-006-0061-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-006-0061-x

Keywords

Navigation