Skip to main content
Log in

Problems of cryogenic cooling of superconductor and semiconductor receivers in the range 0.1–1 THz

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We present the theoretical fundamentals and features of development of cryogenic cooling systems for receivers in the range 0.1–1 THz. The results of development of cryogenic systems for sustaining the temperatures in the range from 150 to 0.3 K are considered. The systems are based on a wide class of cryogenic devices employing various principles and thermodynamic cycles. The described developments are based on the unity of the thermal and radiophysical complexes of the cooled receiver and the cryosystem. The discussed cryosystems are specifically used to cool receivers with the mixers based on Schottky-barrier diodes and superconductor-insulator-superconductor structures, as well as on various bolometers. The problems of heat insulation against the surrounding medium and heat transfer from the receiver to the cryogenic liquid, the features of the input/output of signals in a wide frequency range and of mechanical vacuum-tight thermo-decoupled inputs to the cryostat, and the control systems for cryoelectronic complexes are considered in detail. The presented results can be used for both laboratory experiments and practical applications in radio astronomy, atmosphere spectroscopy, and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Alfeev, Radioengineering of Low Temperatures [in Russian], Sovetskoe Radio, Moscow (1966).

    Google Scholar 

  2. E. I. Antonov, E. A. Kolenko, Yu. A. Petrovsky, and A. I. Smirnov, Devices for Cooling of Radiation Receivers [in Russian], Mashinostroenie, Leningrad, (1975).

    Google Scholar 

  3. Yu. A. Dryagin and L. I. Fedoseev, Radiophys. Quantum Electron., 12, No. 6, 647 (1969).

    Article  Google Scholar 

  4. L. I. Fedoseev and Yu. Yu. Kulikov, Radiotekh. Élektronika, 16, No. 4, 554 (1971).

    Google Scholar 

  5. B. A. Rozanov and S. B. Rozanov, Millimeter-Wave Receivers [in Russian], Radio i Svyaz, Moscow, (1989).

    Google Scholar 

  6. V. F. Vdovin and I. I. Zinchenko, Radiophys. Quantum Electron., 41, 965 (1998).

    Google Scholar 

  7. A. G. Kislyakov and A. A. Shvetsov, Radiohys. Quantum Electron, 16, No. 12, 1433 (1973).

    Google Scholar 

  8. N. A. Esepkina, D. V. Korolkov, and Yu. N. Pariysky, Radio Telescopes and Radiometers [in Russian], Nauka, Moscow, (1972).

    Google Scholar 

  9. V. F. Vdovin, A. I. Eliseev, I. I. Zinchenko, et al., in: Microwave Physics. Collection of Reports on Research Projects of the Ministry for Science and Technology of the Russian Federation [in Russian], p. 100 (2000).

  10. W. J. Archer, Rev. Sci. Instrum, 56, No. 3, 449 (1985).

    Article  ADS  Google Scholar 

  11. I. I. Zinchenko, A. M. Baryshev, V. F. Vdovin, et al., Astron. Lett, 23, 123 (1997).

    ADS  Google Scholar 

  12. C. E. Groppi, “Submillimeter heterodyne spectroscopy of star forming regions,” PhD Thesis, University of Arizona, Tucson (2003). (2003).

    Google Scholar 

  13. W. A. Little, Rev. Sci. Instrum., 5, No. 55. 661 (1984).

    ADS  Google Scholar 

  14. Digest of Symposium on Micro-and Nanocryogenics, August 1–3, 1999, Jyvaskylä, Finland.

  15. V. P. Koshelets, S. V. Shitov, L. V. Filippenko, et al. Radiophys. Quantum Electron., 46, Nos. 8–9, 618 (2003).

    ADS  Google Scholar 

  16. W. Frost, Heat Transfer at Low Temperatures, Plenum Press, New York (1975).

    Google Scholar 

  17. J. W. Lamb, Int. J. Infrared Millimeter Waves, 14, No. 5, 959 (1993).

    Article  ADS  Google Scholar 

  18. G. E. Gol’tsman and D. N. Loudkov, Radiophys. Quantum Electron., 46, Nos. 8–9, 604 (2003).

    ADS  Google Scholar 

  19. F. A. Mansour, S. Ye, B. Jolley, et al., IEEE Trans. Microwave Theory Tech., 48, No. 4, 1171 (2000).

    Google Scholar 

  20. A. N. Vystavkin, Radiophys. Quantum Electron., 46, Nos. 8–9, 729, (2003).

    ADS  Google Scholar 

  21. V. G. Bozhkov, Radiophys. Quantum Electron, 45, No. 5, 381 (2002).

    Article  Google Scholar 

  22. V. F. Vdovin, D. V. Korotaev, N. I. Lapkin, and L. I. Fedoseev, in: Proc. Russian Seminar on Radiophysics of Millimeter-and Submillimeter-Wave Ranges, Nizhny Novgorod, Russia, (2005) [in Russian], p. 31.

  23. T. Gaier, D. Dawson, S. Weinreb, et al., in: J. Mallat, A. Raisanen, and J. Tuovinen, eds., Proc. 3rd ESA Workshop on Millimeter-Wave Technology and Applications: Circuit, Systems, and Measurement Techniques, Millilab, Espoo, Finland: MilliLab, (2003), p. 113.

    Google Scholar 

  24. M. P. Malkov, ed., Handbook of Physico-Technical Fundamentals of Cryogenics [in Russian], Énergoatomizdat, Moscow, (1985).

    Google Scholar 

  25. V. F. Vdovin, D. V. Korotaev, and I. V. Lapkin, in: Proc. 11th International School on Radiophysics and Microwave Electronics Saratov State Univ., Saratov, 1999 [in Russian], p. 21.

    Google Scholar 

  26. R. Siegel and R. J. Howell, Thermal Radiation Heat Transfer, Taylor and Francis, New York (2001).

    Google Scholar 

  27. W. R. McGrath, A. V. Raisanen, P. L. Richards, et al., IEEE Trans. Magn., 21, No. 2, 212 (1985).

    Article  ADS  Google Scholar 

  28. V. F. Vdovin, “Method for determination of the temperature of a Shottky-barrier diode in a cooled mixer,” USSR Inventor’s Certificate No. 1382132 (1986).

  29. V. G. Bozhkov, Radiophys. Quantum Electron., 46, Nos. 8–9, 631 (2003).

    ADS  Google Scholar 

  30. O. Koistinen, H. Valmu, A. Raisanen, et al., IEEE Trans. Microwave Theory Tech., 41, No. 12, 2232 (1993).

    Google Scholar 

  31. V. F. Vdovin, Yu. A. Dryagin, and I. V. Lapkin, in: Proc. 7th All-Union Scientific and Technological Conf. “Metrology in Radioelectronics,” 1988 [in Russian], p. 146.

  32. Yu. A. Dryagin, I. V. Lapkin, V. F. Vdovin, et al., Exp. Astron., 5, 279 (1994).

    Article  ADS  Google Scholar 

  33. A. N. Borienko, V. F. Vdovin, A. I. Eliseev, et al., Peterburg Zh. Élektron., 3, No. 28, 39 (2001).

    Google Scholar 

  34. V. N. Trofimov, A. N. Chernikov, V. F. Vdovin, et al., “Optical cryostat with a sorption He3 refrigerator,” Preprint No. R8-2005-41 [in Russian], Joint Institute for Nuclear Research, Dubna (2005).

    Google Scholar 

  35. A. G. Kislyakov, I. P Yastrebov, V. F. Vdovin, et al., in: Proc. 4th Sci. Conf. on Radiophysics [in Russian], TALAM, Nizhny Novgorod (2001), p. 140.

    Google Scholar 

  36. V. G. Bozhkov, V. F. Vdovin, V. N. Voronov, et al., Radiotekh. Élektron., 37, No. 4, 736 (1992).

    Google Scholar 

  37. V. I. Karagusov, Khim. Neftegaz. Mashinostr., No. 7, 18 (2003).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 48, No. 10–11, pp. 876–889, October–November 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vdovin, V.F. Problems of cryogenic cooling of superconductor and semiconductor receivers in the range 0.1–1 THz. Radiophys Quantum Electron 48, 779–791 (2005). https://doi.org/10.1007/s11141-006-0008-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-006-0008-2

Keywords

Navigation