Skip to main content
Log in

Self-control of chaos in neural circuits with plastic electrical synapses

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

Two kinds of connections are known to exist in neural circuits: electrical (also called gap junctions) and chemical. Whereas chemical synapses are known to be plastic (i. e., modifiable), but slow, electrical transmission through gap junctions is not modifiable, but is very fast. We suggest the new artificial synapse that combines the best properties of both: the fast reaction of a gap junction and the plasticity of a chemical synapse. Such a plastic electrical synapse can be used in hybrid neural circuits and for the development of neural prosthetics, i.e., implanted devices that can interact with the real nervous system. Based on the computer modelling we show that such a plastic electrical synapse regularizes chaos in the minimal neural circuit consisting of two chaotic bursting neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Makarenko and R. Llinas, Proc. Natl. Acad. Sci. U.S.A., 95, 15747 (1998).

    Google Scholar 

  2. H. Hayashi and S. Ishizuka, J. Theor. Biol., 156, 269 (1992).

    Google Scholar 

  3. H. D. I. Abarbanel, R. Huerta, M. I. Rabinovich, et al., Neural Comput., 8, 1567 (1996).

    Google Scholar 

  4. M. I. Rabinovich and H. D. I. Abarbanel, Neuroscience, 87, 5 (1998).

    Google Scholar 

  5. M. I. Rabinovich, H. D. I. Abarbanel, R. Huerta, et al., IEEE Trans. Circuits Syst. I, 44, 997 (1997).

    Google Scholar 

  6. R. C. Elson, A. I. Selverston, R. Huerta, et al., Phys. Rev. Lett., 81, 5692 (1998).

    Google Scholar 

  7. M. I. Rabinovich, P. Varona, J. J. Torres, et al., Physica A, 263, 405 (1999).

    Google Scholar 

  8. M. La Rosa, M. I. Rabinovich, R. Huerta, et al., Phys. Lett. A, 266, 88 (2000).

    Google Scholar 

  9. N. F. Rulkov, Phys. Rev. Lett., 86, 183 (2001).

    Google Scholar 

  10. B. Cazelles, M. Courbage, and M. I. Rabinovich, Europhys. Lett., 56, 504 (2001).

    Google Scholar 

  11. J. L. Hindmarsh and R. M. Rose, Proc. R. Soc. Lond., Ser. B, 221, 87 (1984).

    Google Scholar 

  12. H. D. I. Abarbanel, R. Huerta, and M. I. Rabinovich, Proc. Natl. Acad. Sci. U.S.A., 99, 10132 (2002).

    Google Scholar 

  13. M. Zhan, G. Hu, Y. Zhang, and D. H. He, Phys. Rev. Lett., 86, 1510 (2001).

    Google Scholar 

  14. D. H. He, G. Hu, M. Zhan, and H. P. Lu, Physica D, 156, 314 (2001).

    Google Scholar 

  15. E. Greenfeld and H. Lecar, Phys. Rev. E, 63, article No. 041905 (2001).

  16. J. P. Crutchfield and K. Young, Phys. Rev. Lett., 63, 105 (1989).

    Google Scholar 

  17. P. Melby, J. Kaidel, N. Weber, and A. Hubler, Phys. Rev. Lett., 84, 5991 (2000).

    Google Scholar 

  18. E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett., 64, 1196 (1990).

    Google Scholar 

  19. K. Pyragas, Phys. Lett. A, 170, 421 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 47, Nos. 10–11, pp. 976–981, October–November, 2004.

We thank Alfred Hubler for pointing out reference [17]. This work was partially supported by DOE grant DE-FG03-96ER14592 and NSF Grant EIA-0130708.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhigulin, V.P., Rabinovich, M.I. Self-control of chaos in neural circuits with plastic electrical synapses. Radiophys Quantum Electron 47, 876–881 (2004). https://doi.org/10.1007/s11141-005-0026-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-005-0026-5

Keywords

Navigation