Skip to main content
Log in

Modeling of dynamics of a femtosecond Kerr-lens mode-locked laser by the mode decomposition of the intracavity beam

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

A full spatio-temporal model is used for analyzing the features of generation of femtosecond pulses in a Kerr-lens mode-locked laser. The developed algorithm involves the field decomposition in terms of Laguerre-Gaussian functions which are the modes of empty space. Polarization of the medium is calculated from the Bloch equations for the two-level transition. With allowance for the frequency-dependent diffraction, such a method allows us to describe generation of pulses with a duration of several femtoseconds. It is shown that diffraction results in a shift of the carrier frequency of sub-10-fs pulses toward shorter wavelengths. A multiple-pulse oscillation regime can be realized near zero group-velocity dispersion in the cavity. It is shown that such a regime can be realized in the absence of higher-order dispersion. Strong coupling between the spatial and temporal characteristics of the field is observed for the pulses with a duration of several femtoseconds. This leads to a complicated dependence of the beam size on its power and, therefore, to a complicated variation in power-dependent losses. Due to this feature, regimes of generation of ultrashort pulses cannot be correctly described by models in which power-dependent losses are introduced artificially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. E. Spence, P. N. Kean, and W. Sibbet, Opt. Lett., 16, 42 (1991).

    Google Scholar 

  2. V. Magni, G. Cerullo, and S. De Silvesrtri, Opt. Commun., 101 365 (1993).

    Google Scholar 

  3. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron., 28, 2086 (1992).

    Google Scholar 

  4. G. Cerullo, S. De Silvesrtri, V. Magni, and L. Pallaro, Opt. Lett., 19, 807 (1994).

    Google Scholar 

  5. G. Cerullo, S. De Silvesrtri, and V. Magni, Opt. Lett., 19, 1040 (1994).

    Google Scholar 

  6. M. J. Bohn, R. J. Jones, and J.-C. Diels, Opt. Commun., 170 85 (1999).

    Google Scholar 

  7. J. Garduno-Mejia, M. Mohebi, and N. Jamasbi, Opt. Commun., 171 263 (1999).

    Google Scholar 

  8. J. Herrmann, J. Opt. Soc. Am. B, 11 498 (1994).

    Google Scholar 

  9. A. J. Alfrey, IEEE J. Quantum Electron., 35, 760 (1989).

    Google Scholar 

  10. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Spectral characteristics of ultrashort pulses in kerr-lens mode-locked lasers,” electronic preprint, http://arxiv.org/abs/physics/0101004.

  11. V. Kalashnikov, E. Sorokin, and I. T. Sorokina, J. Opt. Soc. Am. B, 18, No.11, 1732 (2001).

    Google Scholar 

  12. Th. Brabec, Ch. Spielmann, and F. Krausz, Opt. Lett., 17, 748 (1992).

    Google Scholar 

  13. J. Herrmann, V. P. Kalosha, and M. Müller, Opt. Lett., 22, 236 (1997).

    Google Scholar 

  14. M. Santagiustina, J. Opt. Soc. Am. B, 14, 1484 (1997).

    Google Scholar 

  15. I. P. Christov, M. M. Murnane, H. C. Kapteyn, J. Zhou, and C. P. Huang, Opt. Lett., 19, 1465 (1994).

    Google Scholar 

  16. V. L. Kalashnikov, Opt. Commun., 192 323 (2001).

    Google Scholar 

  17. H. A. Haus, I. Sorokina, and E. Sorokin, J. Opt. Soc. Am. B, 15, 223 (1998).

    Google Scholar 

  18. M. Nakazawa, H. Kubota, and K. Tamura, IEEE J. Quantum Electron., 34, 1075 (1998).

    Google Scholar 

  19. T. Brabec, C. Spielmann, and F. Krausz, Opt. Lett., 16, 1961 (1991).

    Google Scholar 

  20. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, J. Opt. Soc. Am. B, 8, 2068 (1991).

    Google Scholar 

  21. F. Krausz, M. E. Fermann, T. Brabec, et al., IEEE J. Quantum Electron., 28, 2097 (1992).

    Google Scholar 

  22. S. R. Bolton and M. R. Acton, Phys. Rev. A, 62, article No. 063 803 (2000).

  23. A. I. Konukhov, L. A. Melnikov, and I. V. Veshneva, Laser Physics, 10, 614 (2000).

    Google Scholar 

  24. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses, AIP, New York (1992).

    Google Scholar 

  25. T. Brabec and F. Krausz, Phys. Rev. Lett., 78 3282 (1997).

    Google Scholar 

  26. Q. Xing, L. Chai, W. Zhang, and C. Wang, Opt. Commun., 162 71 (1999).

    Google Scholar 

  27. M. G. Kovalsky, A. A. Hnilo, and C. M. F. Gonzlez Inchauspe, Opt. Lett., 24, 1638 (1999).

    Google Scholar 

  28. D. Cote and H. M. van Dier, Opt. Lett., 23, 715 (1998).

    Google Scholar 

  29. S. R. Bolton, R. A. Jenks, C. N. Elknton, and G. Sucha, J. Opt. Soc. Am. B, 16, 339 (1999).

    Google Scholar 

  30. L. A. Melnikov, I. V. Veshneva, and A. I. Konukhov, Chaos, Solitons and Fractals, 4, 1535 (1994).

    Google Scholar 

  31. J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, IEEE J. Quantum Electron., 34, 1749 (1998).

    Google Scholar 

  32. J. Jasapara, W. Rudolph, V. L. Kalashnikov, et al., J. Opt. Soc. Am. B, 17, 319 (2000).

    Google Scholar 

  33. V. L. Kalashnikov, I. G. Poloyko, V. P. Mikhailov, and D. von der Linde, J. Opt. Soc. Am. B, 14, 2691 (1997).

    Google Scholar 

  34. M. D. Wei and W.-F. Hsieh, Opt. Commun., 168 161 (1999).

    Google Scholar 

  35. O. E. Martinez and J. L. A. Chilla, Opt. Lett., 17, 1210 (1992).

    Google Scholar 

  36. J. L. A. Chilla and O. E. Martinez, J. Opt. Soc. Am. B, 10, 638 (1993).

    Google Scholar 

  37. A. A. Hnilo, J. Opt. Soc. Am. B, 12, 718 (1995).

    Google Scholar 

  38. V. P. Kalosha, M. Müller, J. Herrmann, and S. Gatz, J. Opt. Soc. Am. B, 15, 535 (1998).

    Google Scholar 

  39. I. P. Christov, V. D. Stoev, M. M. Murnane, and H. C. Kapteyn, Opt. Lett., 20, 2111 (1995).

    Google Scholar 

  40. I. P. Christov, V. D. Stoev, M. M. Murnane, and H. C. Kapteyn, Opt. Lett., 21, 1493 (1996).

    Google Scholar 

  41. I. P. Christov and V. D. Stoev, J. Opt. Soc. Am. B, 15, 1960 (1998).

    Google Scholar 

  42. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York (1975).

    Google Scholar 

  43. N. A. Borisevich, O. V. Buganov, S. A. Tikhomirov, et al., Quantum Electron., 28, 225 (1999).

    Google Scholar 

  44. A. A. Samarsky, Introduction to Numerical methods [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  45. G. P. Agraval, Opt. Commun., 157 52 (1998).

    Google Scholar 

  46. B. E. Bouma, M. Ramaswamy-Paye, and J. G. Fujimoto, Appl. Phys. B, 65, 213 (1997).

    Google Scholar 

  47. Ch. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, IEEE J. Quantum Electron., 30, 1100 (1994).

    Google Scholar 

  48. S. Uemira and K. Torizuka, Opt. Lett., 24, 780 (1997).

    Google Scholar 

  49. C. Wang, Z. Zhang, K. F. Lee, and K. M. Yoo, Opt. Commun., 137 89 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 47, Nos. 10–11, pp. 841–856, October–November, 2004.

This work was partially supported by the grant for young scientists (Y1-P-06-13) of the BRHE program (REC-006). We thank Alexander Apolonsky (Photonics Institute, Vienna University of Technology) for useful remarks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konyukhov, A.I., Melnikov, L.A. Modeling of dynamics of a femtosecond Kerr-lens mode-locked laser by the mode decomposition of the intracavity beam. Radiophys Quantum Electron 47, 755–768 (2004). https://doi.org/10.1007/s11141-005-0014-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-005-0014-9

Keywords

Navigation