Skip to main content
Log in

On some determinants involving the tangent function

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let p be an odd prime and let \(a,b\in {\mathbb {Z}}\) with \(p\not \mid ab\). In this paper,we mainly evaluate

$$\begin{aligned} T_p^{(\delta )}(a,b,x):=\det \left[ x+\tan \pi \frac{aj^2+bk^2}{p}\right] _{\delta \leqslant j,k\leqslant (p-1)/2}\ \ (\delta =0,1). \end{aligned}$$

For example, in the case \(p\equiv 3\ ({\textrm{mod}}\ 4)\), we show that \(T_p^{(1)}(a,b,0)=0\) and

$$\begin{aligned} T_p^{(0)}(a,b,x)={\left\{ \begin{array}{ll} 2^{(p-1)/2}p^{(p+1)/4}&{}\text {if}\ (\frac{ab}{p})=1, \\ p^{(p+1)/4}&{}\text {if}\ (\frac{ab}{p})=-1,\end{array}\right. } \end{aligned}$$

where \((\frac{\cdot }{p})\) is the Legendre symbol. When \((\frac{-ab}{p})=-1\), we also evaluate the determinant \(\det [x+\cot \pi \frac{aj^2+bk^2}{p}]_{1\leqslant j,k\leqslant (p-1)/2}.\) In addition, we pose several conjectures one of which states that for any prime \(p\equiv 3\ ({\textrm{mod}}\ 4)\), there is an integer \(x_p\equiv 1\ ({\textrm{mod}}\ p)\) such that

$$\begin{aligned}\det \left[ \sec 2\pi \frac{(j-k)^2}{p}\right] _{0\leqslant j,k\leqslant p-1}=-p^{(p+3)/2}x_p^2.\end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The work is original, and it has not been submitted elsewhere. This paper contains no special data.

References

  1. Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Wiley, New York (1998)

    Google Scholar 

  2. Brunyate, A., Clark, P.L.: Extending the Zolotarev–Frobenius approach to quadratic reciprocity. Ramanujan J. 37, 25–50 (2015)

    Article  MathSciNet  Google Scholar 

  3. Frobenius, G.: Über die elliptischen Funktionen zweiter Art. J. Reine Angew. Math. 93, 53–68 (1882)

    Article  MathSciNet  Google Scholar 

  4. Huang, C., Pan, H.: A remark on Zolotarev’s theorem. Colloq. Math. 171, 159–166 (2023)

    Article  MathSciNet  Google Scholar 

  5. Ingerman, D.V.: Sequence A277445 in OEIS (2016). http://oeis.org/A277445

  6. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics, vol. 84, 2nd edn. Springer, New York (1990)

  7. Krattenthaler, C.: Advanced determinant calculus: a complement. Linear Algebra Appl. 411, 68–166 (2005)

    Article  MathSciNet  Google Scholar 

  8. Mordell, L.J.: The congruence \((p-1)/2)!\pm 1 ({{\rm mod}} p)\). Am. Math. Mon. 68, 145–146 (1961)

    Article  Google Scholar 

  9. Okada, S.: An elliptic generalization of Schur’s Pfaffian identity. Adv. Math. 204, 530–538 (2006)

    Article  MathSciNet  Google Scholar 

  10. Sun, Z.-W.: On some determinants with Legendre symbol entries. Finite Fields Appl. 56, 285–307 (2019)

    Article  MathSciNet  Google Scholar 

  11. Sun, Z.-W.: Quadratic residues and related permutations and identities. Finite Fields Appl. 59, 246–283 (2019)

    Article  MathSciNet  Google Scholar 

  12. Sun, Z.-W.: A surprising identity: \(\det [\cos \pi jk/n]_{1\leqslant j,k\leqslant n}=(-1)^{\lfloor (n+1)/2\rfloor }(n/2)^{(n-1)/2}\), Question 321098 at MathOverflow (with an answer by Fedor Petrov), 17 January 2019. https://mathoverflow.net/questions/321098

  13. Sun, Z.-W.: Is it true that \(\det [\sin 2\pi (j-k)^2/p]_{1\leqslant j,k\leqslant p-1} =-p^{(p-1)/2}/2^{p-1}\)? Question 395143 at MathOverflow (with an answer by Alexander Kalmynin), 12 June 2021. https://mathoverflow.net/questions/395143

  14. Zolotarev, G.: Nouvelle démonstration de la loi de réciprocité de Legendre. Nouvelles Ann. Math. 11, 354–362 (1872)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Wei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Natural Science Foundation of China (Grant No. 12371004).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ZW. On some determinants involving the tangent function. Ramanujan J 64, 309–332 (2024). https://doi.org/10.1007/s11139-023-00827-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-023-00827-w

Keywords

Mathematics Subject Classification

Navigation