Skip to main content
Log in

A generalization of Markov Numbers

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We explore a generalization of the Markov numbers that is motivated by a specific generalized cluster algebra arising from an orbifold, in the sense of Chekhov and Shapiro. We give an explicit algorithm for computing these generalized Markov numbers and exhibit several patterns analogous to those that appear within the ordinary Markov numbers. Along the way, we present formulas related to continued fractions and snake graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aigner, M., Ziegler, G.M.: Proofs from the Book. Springer, New York (1999)

    Google Scholar 

  2. Apruzzese, P.J.: Two formulas for the number of perfect matchings of band graphs. In preparation

  3. Baragar, A.: Integral solutions of Markov-Hurwitz equations. J. Number Theory 49(1), 27–44 (1994)

    Article  MathSciNet  Google Scholar 

  4. Banaian, E., Kelley, E.: Snake graphs from triangulated orbifolds. Symmetry Integr. Geom. Methods Appl. 16, 138 (2020)

    MathSciNet  Google Scholar 

  5. Beineke, A., Brüstle, T., Hille, L.: Cluster-cyclic quivers with three vertices and the Markov equation. Algebras Represent. Theory 14(1), 97–112 (2011)

    Article  MathSciNet  Google Scholar 

  6. Çanakçı, İ, Schiffler, R.: Snake graph calculus and cluster algebras from surfaces. J. Algebra 382, 240–281 (2013)

    Article  MathSciNet  Google Scholar 

  7. Çanakçı, İ, Schiffler, R.: Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs. Math. Z. 281(1), 55–102 (2015)

    Article  MathSciNet  Google Scholar 

  8. Çanakçı, İ, Schiffler, R.: Cluster algebras and continued fractions. Compos. Math. 154(3), 565–593 (2018)

    Article  MathSciNet  Google Scholar 

  9. Çanakçı, İ, Schiffler, R.: Snake Graphs and continued fractions. Eur. J. Combin. 86, 103081 (2020)

    Article  MathSciNet  Google Scholar 

  10. Çanakçı, İ, Tumarkin, P.: Bases for cluster algebras from orbifolds with one marked point. Algebr. Combin. 2(3), 355–365 (2019)

    Article  MathSciNet  Google Scholar 

  11. Chekhov, L., Shapiro, M.: Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables. Int. Math. Res. Not. 2014(10), 2746–2772 (2014)

    Article  Google Scholar 

  12. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces, part I: cluster complexes. Acta Math. 201(1), 83–146 (2008)

    Article  MathSciNet  Google Scholar 

  13. Fomin, S., Thurston, D.: Cluster algebras and triangulated surfaces Part II: Lambda lengths. Am. Math. Soc. 255, 1223 (2018)

    MathSciNet  Google Scholar 

  14. Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MathSciNet  Google Scholar 

  15. Forbenius, F.G.: Über die Markoffschen Zahlen. Königliche Akademie der Wissenschaften (1913)

  16. Glick, M., Rupel, D.: Introduction to cluster algebras. Symmetries and Integrability of Difference Equations: Lecture Notes of the Abecederian School of SIDE 12, Montreal 2016, pp. 325–357 (2017)

  17. Gyoda, Y.: Positive integer solutions to \((x+ y)^2 +(y+ z)^2 +(z+ x)^2= 12xyz\). Preprint available at arXiv:2109.09639

  18. Gyoda, Y., Matsushita, K.: Generalization of Markov Diophantine equation via generalized cluster algebra. arXiv preprint arXiv:2201.10919 (2022)

  19. Lee, K., Li, L., Rabideau, M., Schiffler, R.: On the ordering of the Markov numbers. arXiv:2010.13010

  20. Markoff, A.: Sur les formes quadratiques binaires indéfinies. Math. Ann. 15(3), 381–406 (1879)

    Article  MathSciNet  Google Scholar 

  21. Musiker, M., Schiffler, R., Williams, L.: Positivity for cluster algebras from surfaces. Adv. Math. 227(6), 2241–2308 (2011)

    Article  MathSciNet  Google Scholar 

  22. Musiker, M., Schiffler, R., Williams, L.: Bases for cluster algebras from surfaces. Compos. Math. 149(2), 217–263 (2013)

    Article  MathSciNet  Google Scholar 

  23. Propp, J.: The combinatorics of frieze patterns and Markoff numbers. arXiv:math/0511633

  24. Rabideau, M., Schiffler, R.: Continued fractions and orderings on the Markov numbers. Adv. Math. 107231, 107 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Gregg Musiker for the original idea to work on these generalizations of Markov numbers and Yasuaki Gyoda for discussions about the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Banaian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banaian, E., Sen, A. A generalization of Markov Numbers. Ramanujan J 63, 1021–1055 (2024). https://doi.org/10.1007/s11139-023-00801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-023-00801-6

Keywords

Mathematics Subject Classification

Navigation