Skip to main content
Log in

Unimodality of partition polynomials related to Borwein’s conjecture

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The objective of this paper is to prove that the polynomials \(\prod _{k=0}^n(1+q^{3k+1})(1+q^{3k+2})\) are symmetric and unimodal for \(n\ge 0\), by an analytical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almkvist, G.: Partitions into odd, unequal parts. J. Pure Appl. Algebra 38, 121–126 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almkvist, G.: Representations of \(SL(2, C)\) and unimodal polynomials. J. Algebra 108, 283–309 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almkvist, G.: Proof of a conjecture about unimodal polynomials. J. Number Theory 32, 43–57 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrews, G.E.: On a conjecture of Peter Borwein, in: Symbolic Computation in Combinatorics \(\Delta _1\), Ithaca, NY, 1993. J. Symb. Comput. 20, 487–501 (1995)

  5. Burdette, A.C.: An Introduction to Analytic Geometry and Calculus, International Academic, New York (1973)

    Google Scholar 

  6. Chen, W.Y.C., Jia, I.D.D.: Semi-invariants of binary forms and Sylvester’s theorem. Ramanujan J. 59, 297–311 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cayley, A.: A second memoir upon quantics. Philos. Trans. R. Soc. Lond. 146, 101–126 (1856)

    Google Scholar 

  8. Dynkin, E.B.: Some systems of weights of linear representations of semi-simple Lie groups. Dokl. Akad. Nauk SSSR 71, 221–224 (1950). (in Russian)

  9. Entringer, R.C.: Representations of \(m\) as \(\sum _{k=-n}^n\epsilon _kk\). Can. Math. Bull. 11, 289–293 (1968)

    Article  Google Scholar 

  10. Hughes, J.W.B.: Lie algebraic proofs of some theorems on partitions. In: Zassenhaus, H. (ed.) Number Theory and Algebra, pp. 135–155. Academic, New York (1977)

    Google Scholar 

  11. O’Hara, K.M.: Unimodality of Gaussian coefficients: a constructive proof. J. Comb. Theory A 53, 29–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Odlyzko, A.M., Richmond, L.B.: On the unimodality of some partition polynomials. Eur. J. Comb. 3, 69–84 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pak, I., Panova, G.: Strict unimodality of \(q\)-binomial coefficients. C. R. Math. Acad. Sci. Paris 351, 415–418 (2013)

  14. Pak, I., Panova, G.: Unimodality via Kronecker products. J. Algebr. Comb. 40, 1103–1120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Proctor, R.A.: Solution of two difficult combinatorial problems with linear algebra. Am. Math. Mon. 89, 721–734 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Roth, K.F., Szekeres, G.: Some asymptotic formulae in the theory of partitions. Q. J. Math. Oxf. Ser. 5(2), 241–259 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stanley, R.P.: Unimodal sequences arising from Lie algebras. In: Combinatorics, Representation Theory and Statistical Methods in Groups. Lecture Notes in Pure and Applied Mathematics, vol. 57, pp. 127–136. Dekker, New York (1980)

  18. Stanley, R.P.: Some aspects of groups acting on finite posets. J. Comb. Theory A 32, 132–161 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stanley, R.P.: Enumerative Combinatorics (English Summary). Cambridge Studies in Advanced Mathematics, vol. 1, p. 49. Cambridge University Press, Cambridge (1997)

  20. Stein, E.M., Shakarchi, R.: Complex Analysis. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  21. Sylvester, J.J.: Proof of the hitherto undemonstrated Fundamental Theorem of Invariants, Philosophical Magazine 5: 178–188; reprinted in College Mathematics Papers, 1973, vol. 3, pp. 117–126. Chelsea, New York (1878)

  22. van Lint, J.H.: Representation of \(0\) as \(\sum _{k=-N}^N\epsilon _kk\). Proc. Am. Math. Soc. 18, 182–184 (1967)

    Article  Google Scholar 

  23. Wang, C.: An analytic proof of the Borwein conjecture. Adv. Math. 394, 108028 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Q. Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Science Foundation of China.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J.J.W., Ji, K.Q. Unimodality of partition polynomials related to Borwein’s conjecture. Ramanujan J 61, 1063–1076 (2023). https://doi.org/10.1007/s11139-023-00721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-023-00721-5

Keywords

Mathematics Subject Classification

Navigation