Skip to main content
Log in

Overpartition analogues of q-bi\(^{s}\)nomial coefficients: basic properties and log-concavity

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper, we define overpartition analogues of q-bi\(^{s}\)nomial coefficients as generating functions for the number of overpartitions fitting inside the \((N-1)\times M\) rectangle in which no part appears more than s times, which we call over q-bi\(^{s}\)nomial (resp. over (qt)-bi\(^{s}\)nomial) coefficients. We study basic properties and we prove the (qt)-log-concavity (resp. the q-log-concavity) of over (qt)-bi\(^{s}\)nomial (resp. over q-bi\(^{s}\)nomial) coefficients. We also extend the Dousse and Kim’s results on the (qt)-log-concavity of over (qt)-binomial coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andrews, G.E.: The theory of partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998). Reprint of the 1976 original

  2. Andrews, G.E., Baxter, J.: Lattice gas generalization of the hard hexagon model III \(q\)-trinomials coefficients. J. Stat. Phys. 47, 297–330 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banderier, C., Schwer, S.: Why Delannoy numbers? J. Stat. Plann. Inference 135(1), 40–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazeniar, A., Ahmia, M., Belbachir, H.: Connection between bi\(^s\)nomial coefficients with their analogs and symmetric functions. Turk. J. Math. 42, 807–818 (2018)

    MATH  Google Scholar 

  5. Bazeniar, A., Ahmia, M., Bouchair, A.: Log-concave sequences of bi\(^{s}\)nomial coefficients with their analogs and symmetric function. Indian J. Pure Appl. Math. 53, 127–137 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belbachir, H., Benmezai, A.: A \(q\)-analogue for bi\(^{s}\)nomial coefficients and generalized Fibonacci sequences. C. R. Acad. Sci. Ser. I(352), 167–171 (2014)

    MATH  Google Scholar 

  7. Belbachir, H., Bouroubi, S., Khelladi, A.: Connection between ordinary multinomials, Fibonacci numbers, Bell polynomials and discrete uniform distribution. Ann. Math. Inf. 35, 21–30 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Brenti, F.: Unimodal, Log-concave and Pólya Frequency Sequences in Combinatorics, p. 413. American Mathematical Society, Providence (1989)

    MATH  Google Scholar 

  9. Brenti, F.: Log-concave and unimodal sequence in algebra, combinatorics and geometry: an update. Electron. Version Contemp. Math. 178, 71–84 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Butler, L.M.: On the \(q\)-log-concavity of \(q\)-binomial coefficients. J. Combin. Theory Ser. A 54(1), 54–63 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corteel, S., Lovejoy, J.: Overpartitions. Trans. Am. Math. Soc. 356(4), 1623–1635 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dousse, J., Kim, B.: An overpartition analogue of the \(q\)-binomial coefficients. Ramanujan J. 42, 267–283 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dousse, J., Kim, B.: An overpartition analogue of the \(q\)-binomial coefficients, II: combinatorial proofs and \((q, t)\)-log concavity. J. Combin. Theory Ser. A 158, 228–253 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sagan, B.E.: On inductive proofs of \(q\)-log-concavity. Discret. Math. 99, 289–306 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sagan, B.E.: Log concave sequences of symmetric functions and analogs of the Jacobi-Trudi determinants. Trans. Am. Math. Soc. 329(2), 795–811 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sylvester, J.J.: Proof of the hitherto undemonstrated fundamental theorem of invariants. Philos. Mag. 5, 178–188 (1878)

    Article  MATH  Google Scholar 

  17. Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics and geometry. Ann. N. Y. Acad. Sci. 576, 500–553 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Su, X.T., Wang, Y.: Unimodality problems of multinomial coefficients and symmetric functions. Electron. J. Combin. 18(1), P73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for many valuable remarks and suggestions to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Ahmia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by DG-RSDT (Algeria), PRFU Project, No. C00L03UN180120220002.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghemit, Y., Ahmia, M. Overpartition analogues of q-bi\(^{s}\)nomial coefficients: basic properties and log-concavity. Ramanujan J 62, 431–455 (2023). https://doi.org/10.1007/s11139-023-00706-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-023-00706-4

Keywords

Mathematics Subject Classification

Navigation