Skip to main content
Log in

Weyl-type bounds for twisted GL(2) short character sums

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let f be a Hecke–Maass or holomorphic primitive cusp form of full level for \(SL(2,{\mathbb {Z}})\) with normalized Fourier coefficients \(\lambda _{f}(n)\). Let \(\chi \) be a primitive Dirichlet character of modulus p, a prime. In this article, we shorten the range of cancellation for N in the twisted GL(2) short character sum. Here, we consider the problem of cancellation in short character sum of the form

$$\begin{aligned} S_{f,\chi }(N):= \mathop \sum _{n \in {\mathbb {Z}}}\lambda _{f}(n)\chi (n)W\Big (\frac{n}{N}\Big ). \end{aligned}$$

We show that, for \(0<\theta < \frac{1}{10}\),

$$\begin{aligned} S_{f,\chi }(N) \ll _{f,\epsilon }N^{3/4 + \theta /2}p^{1/6}(pN)^{\epsilon } + N^{1-\theta }(pN)^{\epsilon }, \end{aligned}$$

which is non-trivial if \(N \ge p^{2/3 + \alpha + \epsilon }\) where\(\alpha = = \frac{4\theta }{1-6\theta }\). Previously, such a bound was known for \(N \ge p^{3/4 + \epsilon }.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggarwal, K., Holowinsky, R., Lin, Y., Sun, Q.: The Burgess bound via a trivial delta method. Ramanujan J. 53(1), 49–54 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barban, M.B., Linnik, Yu.V., Tshudakov, N.G.: On prime numbers in an arithmetic progression with a prime–power difference. Acta Arith. 9, 375–390 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blomer, V., Harcos, G.: Hybrid bounds for twisted L-functions. J. Reine Angew. Math. 621, 53–79 (2008). Addendum: Hybrid bounds for twisted L-functions. J. Reine Angew. Math. 694, 241–244 (2014)

  4. Blomer, V., Milicévić, D.: \(p\)-adic analytic twists and strong subconvexity. Ann. Sci. Ec. Norm. Super. (4) 48(3), 561–605 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blomer, V., Harcos, G., Michel, P.: A Burgess-like subconvex bound for twisted L-functions. Appendix 2 by Z. Mao. Forum Math. 19(1), 61–105 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burgess, D.A.: On character sums and L-series. II. Proc. Lond. Math. Soc. (3) 13, 524–536 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bykovskii, V.A.: A trace formula for the scalar product of Hecke series and its applications. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 226, Anal. Teor. Chisel i Teor. Funktsii. 13, 14–36, 235–236 (1996). https://rdcu.be/cOwJl

  8. Conrey, J.B., Iwaniec, H.: The cubic moment of central values of automorphic L-functions. Ann. Math. (2) 151(3), 1175–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deligne, P.: La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 43, 273–307 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deligne, P., Serre, J.-P.: Formes modulaires de poids \(1\). Ann. Sci. École Norm. Sup. 4(7), 507–530 (1975)

    MathSciNet  MATH  Google Scholar 

  11. Fouvry, É., Kowalski, E., Michel, P.: Algebraic twists of modular forms and Hecke orbits. Geom. Funct. Anal. 25(2), 580–657 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heath-Brown, D.R.: Hybrid bounds for Dirichlet L-functions. Invent. Math. 47(2), 149–170 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ivić, A.: On sums of Hecke series in short intervals. J. Théor. Nombres Bordeaux 13(2), 453–468 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jutila, M.: Transformations of exponential sums. In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori 1989), pp. 263–270. University of Salerno, Salerno (1992)

  15. Jutila, M.: The additive divisor problem and its analogs for Fourier coefficients of cusp forms. I. Math. Z. 233, 435–461 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jutila, M.: The additive divisor problem and its analogs for Fourier coefficients of cusp forms. II. Math. Z. 225, 625–637 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meurman, T.: On exponential sums involving the Fourier coefficients of Maass wave forms. J. Reine Angew. Math. 384, 192–207 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Milicévić, D.: Sub-Weyl subconvexity for Dirichlet L-functions to prime power moduli. Compos. Math. 152(4), 825–875 (2016)

    Article  MathSciNet  Google Scholar 

  19. Munshi, R.: The circle method and bounds for \(L\)-functions. I. Math. Ann. 358, 389–401 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Munshi, R.: A note on Burgess bound. In: Geometry, Algebra, Number Theory, and Their Information Technology Applications. Springer Proceedings in Mathematics and Statistics, vol. 251, pp. 273–289. Springer, Cham (2018)

  21. Munshi, R., Singh, S.K.: Weyl bound for \(p\)-power twist of \(GL(2)\)\(L\)-functions. Algebra Number Theory 13(6), 1395–1413 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nelson, P.: Bounds for standard \(L\)-functions. arXiv e-prints (2021). arXiv:2109.15230

  23. Petrow, I., Young, M.: A generalized cubic moment and the Petersson formula for newforms. Math. Ann. 373(1–2), 287–353 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Petrow, I., Young, M.: The Weyl bound for Dirichlet \(L\)-functions of cube-free conductor. Ann. Math. 192(2), 437–486 (2020). https://doi.org/10.4007/annals.2020.192.2.3

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, H.: Burgess-like subconvex bounds for \(GL(2)\times GL(1)\). Geom. Funct. Anal. 24(3), 968–1036 (2014)

    Article  MathSciNet  Google Scholar 

  26. Wu, H.: Burgess-like subconvexity for \(GL(1)\). Compos. Math. 155(8), 1457–1499 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Young, M.: Weyl-type hybrid subconvexity bounds for twisted L-functions and Heegner points on shrinking sets. J. Eur. Math. Soc. (JEMS) 19(5), 1545–1576 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is a part of the author’s Ph.D. thesis and he is grateful to his advisor Prof. Ritabrata Munshi for suggesting the problem, sharing his beautiful ideas, explaining his ingenious method, and his kind support and encouragement throughout the work. The author is also thankful to Prof. Djordje Milićević for his helpful comments. The author is also thankful to Prof. Satadal Ganguly, Prof. Saurabh Kumar Singh, Kummari Mallesham, Sumit Kumar, and Prahlad Sharma for their constant support and encouragement and Stat-Math Unit, Indian Statistical Institute, Kolkata, for the excellent research environment. Finally, the author would like to thank the referee for his/her comments and suggestions which really helped to improve the presentation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A. Weyl-type bounds for twisted GL(2) short character sums. Ramanujan J 62, 551–569 (2023). https://doi.org/10.1007/s11139-022-00664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-022-00664-3

Keywords

Mathematics Subject Classification

Navigation