Skip to main content
Log in

Somewhat smooth numbers in short intervals

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We use exponent pairs to establish the existence of many \(x^a\)-smooth numbers in short intervals \([x-x^b,x]\), when \(a>1/2\). In particular, \(b=1-a-a(1-a)^3\) is admissible. Assuming the exponent-pairs conjecture, one can take \(b=(1-a)/2+\epsilon \). As an application, we show that \([x-x^{0.4872},x]\) contains many practical numbers when x is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30(1), 205–224 (2017)

    Article  MATH  Google Scholar 

  2. Bourgain, J., Watt, N.: Mean square of zeta function, circle problem and divisor problem revisited, Preprint, arXiv:1709.04340(2017)

  3. Friedlander, J.B., Lagarias, J.C.: On the distribution in short intervals of integers having no large prime factor. J. Number Theory 25(3), 249–273 (1987)

    Article  MATH  Google Scholar 

  4. Graham, S.W., Kolesnik, G.: Van der Corput’s Method of Exponential Sums. London Mathematical Society Lecture Note Series, vol. 126. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  5. Granville, A.: Smooth numbers: computational number theory and beyond, https://dms.umontreal.ca/~andrew/PDF/msrire.pdf

  6. Harman, G.: Integers without large prime factors in short intervals and arithmetic progressions. Acta Arith. 91(3), 279–289 (1999)

    Article  MATH  Google Scholar 

  7. Hausman, M., Shapiro, H.N.: On practical numbers. Commun. Pure Appl. Math. 37(5), 705–713 (1984)

    Article  MATH  Google Scholar 

  8. Heath-Brown, D.R.: A new kth derivative estimate for a trigonometric sum via Vinogradov’s integral. English version published in Proc. Steklov Inst. Math. 296(1), 88–103 (2017)

  9. Heath-Brown, D.R.: A new kth derivative estimate for a trigonometric sum via Vinogradov’s integral. English version published in Tr. Mat. Inst. Steklova 296 (2017)

  10. Heath-Brown, D.R.: Analiticheskaya i Kombinatornaya Teoriya Chisel, pp. 95–110

  11. Huxley, M.N.: Exponential sums and lattice points. III. Proc. Lond. Math. Soc. 87(3), 591–609 (2003)

    Article  MATH  Google Scholar 

  12. Matomäki, K., Radziwiłł, M.: Multiplicative functions in short intervals. Ann. Math. 183(3), 1015–1056 (2016)

    Article  MATH  Google Scholar 

  13. Melfi, G.: A survey on practical numbers. Rend. Sem. Mat. Univ. Politec. Torino 53(4), 347–359 (1995)

    MATH  Google Scholar 

  14. Pomerance, C., Thompson, L., Weingartner, A.: On integers \(n\) for which \(X^n-1\) has a divisor of every degree. Acta Arith. 175(3), 225–243 (2016)

    MATH  Google Scholar 

  15. Pomerance,C.: Practical numbers, Number Theory Web Seminar (via Zoom). https://math.dartmouth.edu/~carlp/practicaltalk.pdf. Accessed 13 Aug 2020

  16. Pomerance, C., Weingartner, A.: On primes and practical numbers, Ramanujan J. (2021). https://doi.org/10.1007/s11139-020-00354-y

  17. Saias, E.: Entiers à diviseurs denses 1. J. Number Theory 62, 163–191 (1997)

    Article  MATH  Google Scholar 

  18. Shiu, P.: A Brun-Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math. 313, 161–170 (1980)

    MATH  Google Scholar 

  19. Tenenbaum, G.: Sur un problème de crible et ses applications. Ann. Sci. École Norm. Sup. (4) 19(4), 1–30 (1986)

    MATH  Google Scholar 

  20. Weingartner, A.: Practical numbers and the distribution of divisors. Q. J. Math. 66(2), 743–758 (2015)

    Article  MATH  Google Scholar 

  21. Weingartner, A.: The number of prime factors of integers with dense divisors. J Number Theory. https://doi.org/10.1016/j.jnt.2021.11.003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Weingartner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weingartner, A. Somewhat smooth numbers in short intervals. Ramanujan J 60, 447–453 (2023). https://doi.org/10.1007/s11139-022-00552-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-022-00552-w

Keywords

Mathematics Subject Classification

Navigation