Skip to main content
Log in

Tweaking the Beukers integrals in search of more miraculous irrationality proofs a la Apéry

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

There are only aleph-zero rational numbers, while there are 2 to the power aleph-zero real numbers. Hence the probability that a randomly chosen real number would be rational is 0. Yet proving rigorously that any specific, natural, real constant is irrational is usually very hard, witness that there are still no proofs of the irrationality of the Euler–Mascheroni constant, the Catalan constant, or \(\zeta (5)\). Inspired by Frits Beukers’ elegant rendition of Apéry’s seminal proofs of the irrationality of \(\zeta (2)\) and \(\zeta (3)\), and heavily using algorithmic proof theory, we systematically searched for other similar integrals that lead to irrationality proofs. We found quite a few candidates for such proofs, including the square-root of \(\pi \) times \(\Gamma (7/3)/\Gamma (-1/6)\) and \(\Gamma (19/6)/\Gamma (8/3)\) divided by the square-root of \(\pi \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alladi, K., Robinson, M.L.: Legendre polynomials and irrationality. J. Reine Angew. Math. 318, 137–155 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Almkvist, G., Zeilberger, D.: The method of differentiating under the integral sign. J. Symbol. Comput. 10, 571–591 (1990)

    Article  MathSciNet  Google Scholar 

  3. Apagodu, M., Zeilberger, D.: Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger Theory. Adv. Appl. Math. 37(Special Regev issue), 139–152 (2006)

    Article  MathSciNet  Google Scholar 

  4. Apéry, R.: Interpolation de fractions continues et irrationalité de certaine constantes. Bull. Sect. Sci. C.T.H.S. 3, 37–53 (1981)

    MATH  Google Scholar 

  5. Beukers, F.: A note on the irrationality of $\zeta (2)$ and $\zeta (3)$. Bull. Lond. Math. Soc. 11, 268–272 (1979)

    Article  Google Scholar 

  6. Chamberland, M., Straub, A.: Apéry limits: experiments and proofs. arxiv.org/abs/2001.034400v1, arxiv.org/abs/2011.03400 (2020)

  7. Hilbert, D.: Mathematical problems. [Lecture delivered before the International Congress of Mathematicians at Paris in 1900], trans by Dr. M.W. Newson. Bull. Am. Math. Soc. 8, 437–479 (1902)

  8. Koutschan, C.: Advanced applications of the holonomic systems approach. PhD thesis, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria (2009). http://www.koutschan.de/publ/Koutschan09/thesisKoutschan.pdf, http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/

  9. Nesterenko, Yu.V.: On Catalan’s constant. Proc. Steklov Inst. Math. 292, 153–170 (2016)

    Article  MathSciNet  Google Scholar 

  10. Rhin, G., Viola, C.: The group structure of $\zeta (3)$. Acta Arithmet. 97, 269–293 (2001)

    Article  Google Scholar 

  11. van der Poorten, A.: A proof that Euler missed... Apéry’s proof of the irrationality of $\zeta $ (3). Math. Intell. 1, 195–203 (1979)

    Article  Google Scholar 

  12. Zeilberger, D.: A Holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32, 321–368 (1990)

    Article  MathSciNet  Google Scholar 

  13. Zeilberger, D.: Computerized deconstruction. Adv. Appl. Math. 30, 633–654 (2003)

    Article  MathSciNet  Google Scholar 

  14. Zeilberger, D.: Searching for Apéry-style miracles [using, inter-alia, the amazing Almkvist–Zeilberger algorithm]. Personal J. Shalosh B. Ekhad and Doron Zeilberger. https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/apery.html

  15. Zeilberger, D., Zudilin, W.: Automatic discovery of irrationality proofs and irrationality measures. Int. J. Numb. Theory. 17, 815–825 (2021). (Also to appear in a book dedicated to Bruce Berndt)

    Article  MathSciNet  Google Scholar 

  16. Zeilberger, D., Zudilin, W.: The irrationality measure of Pi is at most 7.103205334137... Moscow J. Comb. Numb. Theory 9, 407–419 (2020)

    Article  Google Scholar 

  17. Zudilin, W.: Apéry-like difference equations for Catalan’s constant. arxiv:0201024

  18. Zudilin, W.: Arithmetic of linear forms involving odd zeta values. J. Théorie Nombres Bordeaux 16, 251–291 (2004)

    Article  MathSciNet  Google Scholar 

  19. Zudilin, W.: The birthday boy problem. arxiv:2108.06586

Download references

Author information

Authors and Affiliations

Authors

Additional information

In honor of our irrational guru Wadim Zudilin, on his $$\lfloor {50\zeta (5)}\rfloor $$ ⌊ 50 ζ ( 5 ) ⌋ -th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dougherty-Bliss, R., Koutschan, C. & Zeilberger, D. Tweaking the Beukers integrals in search of more miraculous irrationality proofs a la Apéry. Ramanujan J 58, 973–994 (2022). https://doi.org/10.1007/s11139-021-00523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00523-7

Keywords

Mathematics Subject Classification

Navigation