Skip to main content
Log in

Twisting finite-dimensional modules for the q-Onsager algebra \({\mathcal {O}}_q\) via the Lusztig automorphism

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The q-Onsager algebra \({\mathcal {O}}_q\) is defined by two generators A, \(A^*\) and two relations, called the q-Dolan/Grady relations. Recently, Baseilhac and Kolb (Transform Groups, 2020, https://doi.org/10.1007/s00031-020-09555-7) found an automorphism L of \({\mathcal {O}}_q\), that fixes A and sends \(A^*\) to a linear combination of \(A^*\), \(A^2A^*\), \(AA^*A\), \(A^*A^2\). Let V denote an irreducible \({\mathcal {O}}_q\)-module of finite dimension at least two, on which each of A, \(A^*\) is diagonalizable. It is known that A, \(A^*\) act on V as a tridiagonal pair of q-Racah type, giving access to four familiar elements K, B, \(K^\downarrow \), \(B^\downarrow \) in \(\mathrm{End}(V)\) that are used to compare the eigenspace decompositions for A, \(A^*\) on V. We display an invertible \(H \in \mathrm{End}(V)\) such that \(L(X)=H^{-1} X H\) on V for all \(X \in {\mathcal {O}}_q\). We describe what happens when one of K, B, \(K^\downarrow \), \(B^\downarrow \) is conjugated by H. For example \(H^{-1}KH=a^{-1}A-a^{-2}K^{-1}\) where a is a certain scalar that is used to describe the eigenvalues of A on V. We use the conjugation results to compare the eigenspace decompositions for A, \(A^*\), \(L^{\pm 1}(A^*)\) on V. In this comparison we use the notion of an equitable triple; this is a 3-tuple of elements in \(\mathrm{End}(V)\) such that any two satisfy a q-Weyl relation. Our comparison involves eight equitable triples. One of them is \(a A - a^2 K\), \(M^{-1}\), K where \(M= (a K-a^{-1} B)(a-a^{-1})^{-1}\). The map M appears in earlier work of Bockting-Conrad (Linear Algebra Appl 437:242–270, 2012) concerning the double lowering operator \(\psi \) of a tridiagonal pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Bannai, E., Ito, T.: Algebraic Combinatorics I. Association Schemes. The Benjamin/Cummings Publishing Co., Inc, Menlo Park, CA (1984)

    MATH  Google Scholar 

  2. Baseilhac, P.: An integrable structure related with tridiagonal algebras. Nuclear Phys. B 705, 605–619 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baseilhac, P.: Deformed Dolan–Grady relations in quantum integrable models. Nuclear Phys. B 709, 491–521 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baseilhac, P., Belliard, S.: Generalized \(q\)-Onsager algebras and boundary affine Toda field theories. Lett. Math. Phys. 93, 213–228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baseilhac, P., Belliard, S.: The half-infinite XXZ chain in Onsager’s approach. Nuclear Phys. B 873, 550–584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baseilhac, P., Belliard, S.: An attractive basis for the \(q\)-Onsager algebra. arXiv:1704.02950

  7. Baseilhac, P., Koizumi, K.: A new (in)finite dimensional algebra for quantum integrable models. Nuclear Phys. B 720, 325–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baseilhac, P., Koizumi, K.: A deformed analogue of Onsager’s symmetry in the \(XXZ\) open spin chain. J. Stat. Mech. Theory Exp. 510, P10005 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baseilhac, P., Koizumi, K.: Exact spectrum of the \(XXZ\) open spin chain from the \(q\)-Onsager algebra representation theory. J. Stat. Mech. Theory Exp. 709, P09006 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Baseilhac, P., Kolb, S.: Braid group action and root vectors for the \(q\)-Onsager algebra. Transform. Groups 25, 363–389 (2020). https://doi.org/10.1007/s00031-020-09555-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Baseilhac, P., Shigechi, K.: A new current algebra and the reflection equation. Lett. Math. Phys. 92, 47–65 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Belliard, S., Crampe, N.: Coideal algebras from twisted Manin triples. J. Geom. Phys. 62, 2009–2023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bockting-Conrad, S.: Two commuting operators associated with a tridiagonal pair. Linear Algebra Appl. 437, 242–270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bockting-Conrad, S.: Tridiagonal pairs of \(q\)-Racah type, the double lowering operator \(\psi \), and the quantum algebra \(U_q(\mathfrak{sl}_2)\). Linear Algebra Appl. 445, 256–279 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bockting-Conrad, S.: Some \(q\)-exponential formulas involving the double lowering operator \(psi \) for a tridiagonal pair. Advances in Mathematical Sciences. , 9–43 (2020)

  16. Bockting-Conrad, S., Terwilliger, P.: The algebra \(U_q({\mathfrak{sl}}_2)\) in disguise. Linear Algebra Appl. 459, 548–585 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brouwer, A.E., Cohen, A., Neumaier, A.: Distance-Regular Graphs. Springer-Verlag, Berlin (1989)

    Book  MATH  Google Scholar 

  18. Gasper, G., Rahman, M.: Basic Hypergeometric Series. With a Foreword by Richard Askey. Encyclopedia of Mathematics and Its Applications, vol. 96, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  19. Ito, T.: TD-pairs and the \(q\)-Onsager algebra. Sugaku Expositions. 32, 205–232 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ito, T., Nomura, K., Terwilliger, P.: A classification of sharp tridiagonal pairs. Linear Algebra Appl. 435, 1857–1884 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ito, T., Tanabe, K., Terwilliger, P.: Some algebra related to \({P}\)- and \({Q}\)-polynomial association schemes, In: Codes and Association Schemes (Piscataway NJ, 1999). Amer. Math. Soc., Providence RI, pp. 167–192 (2001)

  22. Ito, T., Terwilliger, P.: The \(q\)-tetrahedron algebra and its finite-dimensional irreducible modules. Commun. Algebra 35, 3415–3439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ito, T., Terwilliger, P.: Distance-regular graphs of \(q\)-Racah type and the \(q\)-tetrahedron algebra. Michigan Math. J. 58, 241–254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ito, T., Terwilliger, P.: Tridiagonal pairs of \(q\)-Racah type. J. Algebra 322, 68–93 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ito, T., Terwilliger, P.: The augmented tridiagonal algebra. Kyushu J. Math. 64, 81–144 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ito, T., Terwilliger, P., Weng, C.H.: The quantum algebra \(U_q (\mathfrak{sl}_2)\) and its equitable presentation. J. Algebra 298, 284–301 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Koekoek, R., Lesky, P.A., Swarttouw, R.: Hypergeometric orthogonal polynomials and their \(q\)-analogues. With a foreword by Tom H. Springer Monographs in Mathematics, Koornwinder. Springer-Verlag, Berlin (2010)

    Book  MATH  Google Scholar 

  28. Kolb, S.: Quantum symmetric Kac–Moody pairs. Adv. Math. 267, 395–469 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kolb, S., Pellegrini, J.: Braid group actions on coideal subalgebras of quantized enveloping algebras. J. Algebra 336, 385–416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nomura, K., Terwilliger, P.: Sharp tridiagonal pairs. Linear Algebra Appl. 429, 79–99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Terwilliger, P.: The subconstituent algebra of an association scheme. III. J. Algebraic Comb. 2, 177–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Terwilliger, P.: Two relations that generalize the \(q\)-Serre relations and the Dolan–Grady relations. Phys. Comb. (Nagoya) 1999, 377–398 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an Eigenbasis of the other. Linear Algebra Appl. 330, 149–203 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Terwilliger, P.: An Algebraic Approach to the Askey Scheme of Orthogonal Polynomials. Orthogonal Polynomials and Special Functions. Lecture Notes in Math., vol. 1883, pp. 255–330. Springer, Berlin (2006)

  35. Terwilliger, P.: The universal Askey–Wilson algebra. SIGMA Symmetry Integrability Geom. Methods Appl. 7, Paper 069 (2011)

  36. Terwilliger, P.: Finite-dimensional irreducible \(U_q(\mathfrak{sl}_2)\)-modules from the equitable point of view. Linear Algebra Appl. 439, 358–400 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Terwilliger, P.: The \(q\)-Onsager algebra and the positive part of \(U_q(\widehat{\mathfrak{s}l}_2)\). Linear Algebra Appl. 521, 19–56 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Terwilliger, P.: Tridiagonal pairs of \(q\)-Racah type, the Bockting operator \(\psi \), and \(L\)-operators for \(U_q(L(\mathfrak{sl}_2))\). ARS Math. Contemp. 14, 55–65 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Terwilliger, P.: The Lusztig automorphism of the \(q\)-Onsager algebra. J. Algebra 506, 56–75 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Terwilliger, P.: The \(q\)-Onsager algebra and the universal Askey-Wilson algebra. SIGMA Symmetry Integrability Geom. Methods Appl. 14, Paper No. 044 (2018)

  41. Terwilliger, P., Vidunas, R.: Leonard pairs and the Askey–Wilson relations. J. Algebra Appl. 3, 411–426 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Pascal Baseilhac and Edward Hanson, for giving the paper a close reading and offering valuable comments. The author thanks Kazumasa Nomura, for explaining how to create the diagrams and double checking the equations of the paper by computer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Terwilliger.

Additional information

Dedicated to Richard Allen Askey (1933–2019)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terwilliger, P.M. Twisting finite-dimensional modules for the q-Onsager algebra \({\mathcal {O}}_q\) via the Lusztig automorphism. Ramanujan J 61, 175–202 (2023). https://doi.org/10.1007/s11139-021-00513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00513-9

Keywords

Mathematics Subject Classification

Navigation