Skip to main content
Log in

Shifted convolution sums of GL(m) cusp forms with \(\Theta \)-series

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(\lambda _\pi (1,\ldots ,1,n)\) be the normalized Fourier coefficients of an even Hecke–Maass form \(\pi \) for \(SL(m, {\mathbb {Z}})\) with \(m\ge 3\), and \(r_{3}(n)=\#\{(n_1,n_2,n_3)\in {\mathbb {Z}}^3:n=n_1^2+n_2^2+n_3^2\}\). In this paper, we introduce a refined version of the circle method to derive a sharp bound for the shifted convolution sum of GL(m) Fourier coefficients \(\lambda _\pi (1,\ldots ,1 ,n)\) and \(r_{3}(n)\), which improves previous results (even under the generalized Ramanujan conjecture).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldfeld, D., Li, X. Q.: The Voronoi formula for GL(n,R). Int. Math. Res. Not. IMRN, no.2, Art. ID rnm144, (2008)

  2. Hu, G.W., Jiang, Y.J., Lü, G.S.: The Fourier coefficients of \(\Theta \)-series in arithmetic progressions. Mathematika 66(1), 39–55 (2020)

    Article  MathSciNet  Google Scholar 

  3. Huxley, M.N.: Area, lattice points, and exponential sums. London Mathematical Society Monographs. New Series, 13. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1996)

  4. Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, vol. 17. American Mathematical Society, Providence, RI (1997)

    MATH  Google Scholar 

  5. Iwaniec, H., Kowalski, E.: Analytic Number Theory, American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI (2004)

    Google Scholar 

  6. Jacquet, H., Shalika, J.A.: On Euler products and the classification of automorphic representations. I. Am. J. Math. 103(3), 499–558 (1981)

    Article  MathSciNet  Google Scholar 

  7. Jiang, Y.J., Lü, G.S.: Shifted convolution sums for higher rank groups. Forum Math. 31(2), 361–383 (2019)

    Article  MathSciNet  Google Scholar 

  8. Kim, H.: Functoriality for the exterior square of \(GL_4\) and the symmetric fourth of \(GL_2\). With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. J. Am. Math. Soc. 16(1), 139–183 (2003)

    Article  Google Scholar 

  9. Kiral, E.M., Zhou, F.: The Voronoi formula and double Dirichlet series. Algebra Number Theory 10(10), 2267–2286 (2016)

    Article  MathSciNet  Google Scholar 

  10. Luo, W.Z., Rudnick, Z., Sarnak, P.: On the generalized Ramanujan conjecture for \({\rm GL}(n)\). Automorphic forms, automorphic representations, and arithmetic. Proc. Sympos. Pure Math. 66, 301–310 (1996)

    Google Scholar 

  11. Munshi, R.: Shifted convolution of divisor function \(d_3\) and Ramanujan \(\tau \) function. The legacy of Srinivasa Ramanujan, 251–260, Ramanujan Math. Soc. Lect. Notes Ser., 20, Ramanujan Math. Soc., Mysore, (2013)

  12. Munshi, R.: Shifted convolution sums for \({GL}(3)\times {GL}(2)\). Duke Math. J. 162(13), 2345–2362 (2013)

    Article  MathSciNet  Google Scholar 

  13. Pitt, N.J.E.: On shifted convolutions of \(\zeta ^3(s)\) with automorphic L-functions. Duke Math. J. 77(2), 383–406 (1995)

    Article  MathSciNet  Google Scholar 

  14. Ren, X.M., Ye, Y.B.: Resonance and rapid decay of exponential sums of Fourier coefficients of a Maass form for \(GL_m({\mathbb{Z}})\). Sci. China Math. 58(10), 2105–2124 (2015)

    Article  MathSciNet  Google Scholar 

  15. Sun, Q.F.: Shifted convolution sums of \( GL_3\) cusp forms with \(\theta \)-series. Int. Math. Res. Not. 6, 1805–1829 (2017)

    MATH  Google Scholar 

  16. Vaughan, R.: The Hardy–Littlewood Method, 2nd ed., Cambridge Tracts in Math. 125, Cambridge University, Cambridge (1997)

  17. Xi, P.: A shifted convolution sum for \(GL(3)\times GL(2)\). Forum Math. 30(4), 1013–1027 (2018)

    Article  MathSciNet  Google Scholar 

  18. Zhao, L.L.: The sum of divisors of a quadratic form. Acta Arith. 163(2), 161–177 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referee for some extremely helpful remarks. In particular, we are indebted to the referee for pointing out a gap in the proof of Lemma 4.6 in an earlier version of the paper. The first named author would like to thank Yujiao Jiang for his encouragement and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwei Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by NSFC (Grant Nos. 11771252, 12031008), IRT16R43, and the Taishan Scholar Project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Lü, G. Shifted convolution sums of GL(m) cusp forms with \(\Theta \)-series. Ramanujan J 56, 555–584 (2021). https://doi.org/10.1007/s11139-021-00447-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00447-2

Keywords

Mathematics Subject Classification

Navigation