Skip to main content
Log in

On the error term \(\Delta _{(k,l)}(x)\)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let k, l be non-negative integers and \(\zeta ^{(k)}(s)\) denote the kth derivative of the Riemann zeta function \(\zeta (s).\) Further let \(d_{(k,l)}(n)\) be the nth coefficient of the Dirichlet series \(\zeta ^{(k)}(s)\zeta ^{(l)}(s)=\sum _{n=1}^{\infty }\frac{d_{(k,l)}(n)}{n^{s}}\) for \(\mathfrak {R}s>1,\) and \(\Delta _{(k,l)}(x)\) be the error term of \(\sum _{n\le x}d_{(k,l)}(n).\) In this paper, we will study some properties of \(\Delta _{(k,l)}(x)\), including its “truncated Voronoï formula” , the mean square formula and the higher-power moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cramér, H.: Über zwei Sätze von Herrn G. H. Hardy. Math. Z. 15, 201–210 (1922)

    Article  MathSciNet  Google Scholar 

  2. Furuya, J., Minamide, M., Tanigawa, Y.: Representations and evaluations of the error term in a certain divisor problem. Math. Slovaca 66, 575–582 (2016)

    Article  MathSciNet  Google Scholar 

  3. Gonek, S.M.: Mean values of the Riemann zeta-function and its derivatives. Invent. Math. 75, 123–141 (1984)

    Article  MathSciNet  Google Scholar 

  4. Huxley, M.N.: Exponential sums and lattice points \(III\). Proc. Lond. Math. Soc. 87, 591–609 (2003)

    Article  MathSciNet  Google Scholar 

  5. Ivić, A.: The Riemann Zeta-Function. Wiley, Chichester (1985)

    MATH  Google Scholar 

  6. Ivić, A., Sargos, P.: On the higher power moments of the error term in the divisor problem. Ill. J. Math. 51(2), 353–377 (2007)

    MATH  Google Scholar 

  7. Liu, D., Sui, Y.: On higher-power moments of \(\Delta _{(1)}(x)\). Acta Math. Hung. 162, 445–464 (2020)

    Article  MathSciNet  Google Scholar 

  8. Minamide, M.: The truncated Voronoï formula for the derivative of the Riemann zeta function. Indian J. Math. 55, 325–352 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Titchmarsh, E.C.: The theory of the Riemann zeta function, 2nd ed. rev. by D. R. Heath-Brown. Oxford University Press (1986)

  10. Tsang, K.M.: Higher-power moments of \(\Delta (x),\)\(E(t)\) and \(P(x),\) Proc. Lond. Math. Soc. (3) 65, 65–84 (1992)

    Article  Google Scholar 

  11. Zhai, W.G.: On higher-power moments of \(\Delta (x)\) (II). Acta Arith. 114, 35–54 (2004)

    Article  MathSciNet  Google Scholar 

  12. Zhai, W.G.: On higher-power moments of \(\Delta (x)\) (III). Acta Arith. 118, 263–281 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yankun Sui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (Grant No.11971476).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Sui, Y. On the error term \(\Delta _{(k,l)}(x)\). Ramanujan J 58, 523–548 (2022). https://doi.org/10.1007/s11139-021-00443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00443-6

Keywords

Mathematics Subject Classification

Navigation