Skip to main content
Log in

Highly composite numbers and the Riemann hypothesis

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let us denote by d(n) the number of divisors of n, by \({{\,\mathrm{li}\,}}(t)\) the logarithmic integral of t, by \(\beta _2\) the number \(\frac{\log 3/2}{\log 2}=0.584\ldots \) and by R(t) the function \(t\mapsto \frac{2\sqrt{t} +\sum _\rho t^\rho /\rho ^2}{\log ^2 t}\), where \(\rho \) runs over the non-trivial zeros of the Riemann \(\zeta \) function. In his PHD thesis about highly composite numbers, Ramanujan proved, under the Riemann hypothesis, that

$$\begin{aligned}\frac{\log d(n)}{\log 2} \leqslant {{\,\mathrm{li}\,}}(\log n)+\beta _2{{\,\mathrm{li}\,}}(\log ^{\beta _2} n)- \frac{\log ^{\beta _2} n}{\log \log n} -R(\log n)+ {\mathcal {O}}\left( \frac{\sqrt{\log n}}{(\log \log n)^3}\right) \end{aligned}$$

holds when n tends to infinity. The aim of this paper is to give an effective form to the above asymptotic result of Ramanujan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  2. Alaoglu, L., Erdős, P.: On highly composite and similar numbers. Trans. Am. Math. Soc. 56, 448–469 (1944)

    Article  MathSciNet  Google Scholar 

  3. Bessi, G., Nicolas, J.-L.: Nombres 2-hautement composés. J. Math. Pures Appl. 5, 307–326 (1977)

    MATH  Google Scholar 

  4. Büthe, J.: An analytic method for bounding \(\psi (x)\). Math. Comp. 87(312), 1991–2009 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cohen, H.: Number Theory. Vol. II, Analytic and Modern Tools. Springer, Heidelberg (2007)

  6. Deléglise, M., Nicolas, J.-L.: Le plus grand facteur premier de la fonction de Landau. The Ramanujan J. 27, 109–145 (2012)

    Article  MathSciNet  Google Scholar 

  7. Dusart, P.: Explicit estimates of some functions over primes. The Ramanujan J. 45, 227–251 (2018)

    Article  MathSciNet  Google Scholar 

  8. Edwards, H.M.: Riemann’s Zeta function. Academic Press, New-York-London (1974)

    MATH  Google Scholar 

  9. Ellison, W.J.: Les Nombres Premiers. En collaboration avec Michel Mendès France, Publications de l’Institut de Mathématique de l’Université de Nancago, No. IX, Actualités Scientifiques et Industrielles, No. 1366. Hermann, Paris (1985)

  10. Ellison, W.J., Ellison, F.: Prime numbers. John Wiley & Sons Inc, New York, Hermann, Paris (1985)

    MATH  Google Scholar 

  11. Erdős, P.: On highly composite numbers. J. Lond. Math. Soc. 19, 130–133 (1944)

    Article  MathSciNet  Google Scholar 

  12. Erdős, P., Nicolas, J.-L., Sárközy, A.: On large values of the divisor function. The Ramanujan J. 2, 225–245 (1998)

    Article  MathSciNet  Google Scholar 

  13. Ingham A. E.: The distribution of prime numbers. Cambridge Mathematical Librairy. Reprint of the 1932 original, with a foreword by R.C. Vaughan. Cambridge University Press, Cambridge (1990)

  14. Lang, S.: Introduction to transcendental numbers. Addison Wesley Series in Math. (1966)

  15. Nicolas, J.-L.: Ordre maximum d’un élément du groupe de permutations et highly composite numbers. Bull. Soc. Math. France 97, 129–191 (1969)

    Article  MathSciNet  Google Scholar 

  16. Nicolas, J.-L.: Répartition des nombres hautement composés de Ramanujan. Can. J, Math. 23, 116–130 (1971)

  17. Nicolas, J.-L.: Répartition des nombres largement composés. Acta Arithmetica 34, 379–390 (1979)

    Article  MathSciNet  Google Scholar 

  18. Nicolas, J.-L.: On highly composite numbers. In: Andrews, G.E., Askey, R.A., Berndt, B.C., Ramanathan, K.G., Rankin, R.A. (eds.) Ramanujan Revisited, Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, 1987, pp. 215–244. Academic Press, New York (1988)

    Google Scholar 

  19. Nicolas, J.-L.: Nombres hautement composés. Acta Arithm. 49, 395–412 (1988)

    Article  Google Scholar 

  20. Nicolas, J.-L.: Estimates of \(li(\theta (x))-\pi (x)\) and the Riemann hypothesis. In: Analytic Number Theory, Modular Forms and \(q\)-Hypergeometric Series. Springer Proceedings in Mathematics & Statistics, vol. 221, pp. 587–610. Springer, Heidelberg (2017)

  21. Nicolas, J.-L., Robin, G.: Majorations explicites pour le nombre de diviseurs de \(n\). Bull. Can. Math. 26, 485–492 (1983)

    Article  MathSciNet  Google Scholar 

  22. Nielsen, N.: Theorie der Integrallogarithmus. Chelsea, New York (1906)

    MATH  Google Scholar 

  23. Platt, D.J., Trudgian, T.: On the first sign change of \(\theta (x)-x\). Math. Comput. 85(299), 1539–1547 (2016)

    Article  MathSciNet  Google Scholar 

  24. Ramanujan, S.: Highly composite numbers. Proc. Lond. Math. Soc. Ser. 2 14, 347–409 (1915). In: Collected Papers, pp. 78–128. Cambridge University Press, Cambridge (1927)

  25. Ramanujan, S.: Highly composite numbers, annotated and with a foreword by J.-L. Nicolas and G. Robin. Ramanujan J. 1, 119–153 (1997)

    Article  MathSciNet  Google Scholar 

  26. Robin, G.: Méthodes d’optimisation pour un problème de théorie des nombres. RAIRO Inf. Téor. 17(3), 239–247 (1983)

    Article  Google Scholar 

  27. Robin, G.: Sur la différence \(\text{ li }(\theta (x))-\pi (x)\). Ann. Fac. Sci. Toulouse Math. 6, 257–268 (1984)

    Article  MathSciNet  Google Scholar 

  28. Robin, G.: Grandes valeurs de fonctions arithmétiques et problèmes d’optimisation en nombres entiers. In: Thèse d’état, pp. 41–51. Université de Limoges, Limoges, France (1984)

  29. Rosser, J., Schoenfeld L, B.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6, 64–94 (1962)

    Article  MathSciNet  Google Scholar 

  30. Schoenfeld, L.: Sharper bounds for the Chebyshev functions \(\theta (x)\) and \(\psi (x)\). II. Math. Comp. 30(134), 337–360 (1976)

    MathSciNet  MATH  Google Scholar 

  31. Waldschmidt, M.: Diophantine Approximation on Linear Algebraic Groups. Grundlehren der mathematischen Wissenschaften 326. Springer, Heidelberg (2000)

  32. http://math.univ-lyon1.fr/homes-www/~nicolas/calculhcnHR.html (2016). Accessed 4 Feb 2021

  33. http://math.univ-lyon1.fr/homes-www/~deleglis/Calculs/tableThmin18.txt (2016). Accessed 4 Feb 2021

Download references

Acknowledgements

I am pleased to thank Marc Deléglise for his computations and for several discussions about this paper and the anonymous referee for her (or his) careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Nicolas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by CNRS, UMR 5208.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolas, JL. Highly composite numbers and the Riemann hypothesis. Ramanujan J 57, 507–550 (2022). https://doi.org/10.1007/s11139-021-00392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00392-0

Keywords

Mathematics Subject Classification

Navigation