Skip to main content
Log in

An additive problem over Piatetski–Shapiro primes and almost-primes

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(\mathcal {P}_r\) denote an almost-prime with at most r prime factors, counted according to multiplicity. In this paper, we establish a theorem of Bombieri–Vinogradov type for the Piatetski–Shapiro primes \(p=[n^{1/\gamma }]\) with \(\frac{85}{86}<\gamma <1\). Moreover, we use this result to prove that, for \(0.9989445<\gamma <1\), there exist infinitely many Piatetski–Shapiro primes such that \(p+2=\mathcal {P}_3\), which improves the previous results of Lu (Acta Math Sin (Engl Ser) 34(2):255–264, 2018), Wang and Cai (Int J Number Theory 7(5):1359–1378, 2011), and Peneva (Monatsh Math 140(2):119–133, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, R.C., Harman, G., Rivat, J.: Primes of the form \([n^c]\). J. Number Theory 50(2), 261–277 (1995)

    Article  MathSciNet  Google Scholar 

  2. Balog, A., Friedlander, J.: A hybrid of theorems of Vinogradov and Piatetski-Shapiro. Pac. J. Math. 156(1), 45–62 (1992)

    Article  MathSciNet  Google Scholar 

  3. Bombieri, E., Davenport, H.: On the large sieve method. In: Number Theory and Analysis, pp. 9–22. Plenum, New York (1969)

  4. Chen, J.R.: On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao 17, 385–386 (1966)

    MathSciNet  Google Scholar 

  5. Chen, J.R.: On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sin. 16, 157–176 (1973)

    MathSciNet  MATH  Google Scholar 

  6. Cui, Z.: Hua’s theorem with the primes in Shapiro prime sets. Acta Math. Hungar. 104(4), 323–329 (2004)

    Article  MathSciNet  Google Scholar 

  7. Davenport, H.: Multiplicative Number Theory, 2nd edn. Springer, New York (1980)

    Book  Google Scholar 

  8. Friedlander, J., Iwaniec, H.: Opera de cribro. American Mathematical Society, Providence, RI (2010)

    Book  Google Scholar 

  9. Halberstam, H., Richert, H.E.: Sieve Methods. Academic Press, London (1974)

    MATH  Google Scholar 

  10. Heath-Brown, D.R.: Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math. 34(6), 1365–1377 (1982)

    Article  MathSciNet  Google Scholar 

  11. Heath-Brown, D.R.: The Pjateckiĭ-S̆apiro prime number theorem. J. Number Theory 16(2), 242–266 (1983)

    Article  MathSciNet  Google Scholar 

  12. Helfgott, H.A.: Major arcs for Goldbach’s problem, preprint (2013). arXiv:1305.2897

  13. Helfgott, H.A.: The ternary Goldbach problem. Rev. Mat. Iberoamericana 130(2), 45–59 (2015)

    MathSciNet  Google Scholar 

  14. Helfgott, H.A.: The ternary Goldbach conjecture. Gac. R. Soc. Mat. Esp. 16(4), 709–726 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Helfgott, H.A.: La conjecture de Goldbach ternaire. Gaz. Math. 140, 5–18 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Jia, C.-H.: On the Piatetski-Shapiro prime number theorem (II). Sci. China Ser. A 36, 913–926 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Jia, C.-H.: On the Piatetski-Shapiro prime number theorem. Chin. Ann. Math. 15(1), 9–22 (1994)

    Google Scholar 

  18. Jia, C.-H.: On the Piatetski–Shapiro–Vinogradov theorem. Acta Arith. 73(1), 1–28 (1995)

    Article  MathSciNet  Google Scholar 

  19. Kolesnik, G.: The distribution of primes in sequences of the form \([n^c]\). Mat. Zametki 2(2), 117–128 (1972)

    Google Scholar 

  20. Kolesnik, G.: Primes of the form \([n^c]\). Pac. J. Math. 118(2), 437–447 (1985)

    Article  MathSciNet  Google Scholar 

  21. Kumchev, A.: On the Piatetski–Shapiro–Vinogradov theorem. J. Théor. Nombres Bordeaux 9(1), 11–23 (1997)

    Article  MathSciNet  Google Scholar 

  22. Kumchev, A.: On the distribution of prime numbers of the form \([n^c]\). Glasg. Math. J. 41(1), 85–102 (1999)

    Article  MathSciNet  Google Scholar 

  23. Leitmann, D.: The distribution of prime numbers in sequences of the form \([f(n)]\). Proc. Lond. Math. Soc. (3) 35(3), 448–462 (1977)

    Article  MathSciNet  Google Scholar 

  24. Leitmann, D.: Abschätzung trigonometrischer Summen. J. Reine Angew. Math. 317, 209–219 (1980)

    MathSciNet  MATH  Google Scholar 

  25. Li, J., Zhang, M.: Hua’s theorem with the primes in Piatetski-Shapiro prime sets. Int. J. Number Theory 14(1), 193–220 (2018)

    Article  MathSciNet  Google Scholar 

  26. Liu, H.Q., Rivat, J.: On the Pjateckiĭ-S̆apiro prime number theorem. Bull. Lond. Math. Soc. 24(2), 143–147 (1992)

    Article  Google Scholar 

  27. Lu, Y.M.: An additive problem on Piatetski–Shapiro primes. Acta Math. Sin. (Engl. Ser.) 34(2), 255–264 (2018)

    Article  MathSciNet  Google Scholar 

  28. Pan, C.D., Pan, C.B.: Goldbach Conjecture. Science Press, Beijing (1992)

    MATH  Google Scholar 

  29. Peneva, T.P.: An additive problem with Piatetski–Shapiro primes and almost-primes. Monatsh. Math. 140(2), 119–133 (2003)

    Article  MathSciNet  Google Scholar 

  30. Pyateckiĭ–S̆apiro, I.I.: On the distribution of prime numbers in sequences of the form \([f(n)]\). Mat. Sbornik N.S. 33(75), 559–566 (1953)

    MathSciNet  Google Scholar 

  31. Rényi, A.A.: On the representation of an even number as the sum of a single prime and a single almost–prime number. Doklady Akad. Nauk SSSR (N.S.) 56, 455–458 (1947)

    MathSciNet  MATH  Google Scholar 

  32. Rivat, J.: Autour d’un théoréme de Pjateciĭ-S̆apiro: Nombres premiers dans la suite \([n^c]\). Université Paris-Sud, Thése de Doctorat (1992)

  33. Rivat, J., Sargos, P.: Nombres premiers de la forme \(\lfloor n^c\rfloor \). Can. J. Math. 53(2), 414–433 (2001)

    Article  Google Scholar 

  34. Rivat, J., Wu, J.: Prime numbers of the form \([n^c]\). Glasg. Math. J. 43(2), 237–254 (2001)

    Article  MathSciNet  Google Scholar 

  35. Vaughan, R.C.: Diophantine approximation by prime numbers. III. Proc. Lond. Math. Soc. (3) 33(1), 177–192 (1976)

    Article  MathSciNet  Google Scholar 

  36. Vinogradov, I.M.: Representation of an odd number as the sum of three primes. Dokl. Akad. Nauk. SSSR 15, 169–172 (1937)

    Google Scholar 

  37. Wang, X., Cai, Y.C.: An additive problem involving Piatetski-Shapiro primes. Int. J. Number Theory 7(5), 1359–1378 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express the most sincere gratitude to Professor Wenguang Zhai for his valuable advice and constant encouragement. Also, the authors appreciate the referee for his/her patience in refereeing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (Grant No. 11901566, 12001047, 11971476, 12071238), the Fundamental Research Funds for the Central Universities (Grant No. 2019QS02), and the Scientific Research Funds of Beijing Information Science and Technology University (Grant No. 2025035)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, M. & Xue, F. An additive problem over Piatetski–Shapiro primes and almost-primes. Ramanujan J 57, 1307–1333 (2022). https://doi.org/10.1007/s11139-021-00390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00390-2

Keywords

Mathematics Subject Classification

Navigation