Skip to main content
Log in

Voronoi summation formula for Gaussian integers

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We prove a Voronoi–Oppenheim summation formula for divisor functions associated with Gaussian integers. This formula is a direct generalization of Oppenheim’s summation formula for classical divisor functions. To prove the formula we construct an Eisenstein series and study its properties. Our method of proof is similar to Beineke and Bump’s proof of the classical Oppenheim summation formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ichino, A., Templier, N.: On the Voronoi formula for \(GL(n)\). Am. J. Math. 35(1), 65–101 (2013)

    Article  MathSciNet  Google Scholar 

  2. Beineke, J., Bump, D.: Moments of the Riemann Zeta function and Eisenstein series I. J. Number Theory 105, 150–174 (2004)

    Article  MathSciNet  Google Scholar 

  3. Beineke, J., Bump, D.: A summation formula for divisor functions associated to lattices. Forum Math. 18(6), 869–906 (2006)

    Article  MathSciNet  Google Scholar 

  4. Baruch, E.M., Beit-Aharon, O.: A kernel formula for the action of the Weyl element, in the Kirillov model for \(SL(2, C)\). J. Number Theory 146, 23–40 (2015)

    Article  MathSciNet  Google Scholar 

  5. Baruch, E.M., Mao, Z.: Bessel identities in the Waldspurger correspondence over the real numbers. Israel J. Math. 145, 1–81 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bruggeman, R., Motohashi, Y.: A note on the mean value of the zeta and L-functions XIII. In: Proc. Japan Acad. Ser. A Math. Sci., vol. 78(6), pp. 87–91 (2002)

  7. Cogdell, J.W., Piatetski-Shapiro, I.: The Arithmetic and Spectral Analysis of Poincare Series, Perspectives in Mathematics, vol. 13. Academic Press Inc., Boston, MA (1990)

    MATH  Google Scholar 

  8. Elstrodt, J., Grunewald, F., Mennicke, J.: Groups Acting on Hyperbolic Space. Springer, New York (1997)

    MATH  Google Scholar 

  9. Gelfand, I.M., Graev, M.I., Pyatetskii-Shapiro, I.: Representation Theory and Automorphic Functions, Generalized Functions, vol. 6. Academic Press Inc., Boston, MA (1990)

    Google Scholar 

  10. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 4th edn. Academic Press Inc., Cambridge (1965)

    MATH  Google Scholar 

  11. Goldfeld, D., Li, X.: Voronoi formulas on \(GL(n)\). Int. Math. Res. Not. 1–25 (2006)

  12. Goldfeld, D., Li, X.: The Voronoi formula for \(GL(n, R)\). Int. Math. Res. Not. 2, 1–39 (2008)

    Google Scholar 

  13. Hardy, G.H.: On the expression of a number as the sum of two squares. Q. J. Math. (Oxford) 46, 263–283 (1915)

    MATH  Google Scholar 

  14. Kıral, E.M., Zhou, F.: The Voronoi formula and double Dirichlet series. Algebra Number Theory 10, 2267–2286 (2016)

    Article  MathSciNet  Google Scholar 

  15. Lang, S.: Algebraic Number Theory, 2nd edn. Springer, New York (1994)

    Book  Google Scholar 

  16. Miller, S.D., Schmid, W.: Automorphic distributions, L-functions, and Voronoi summation for \(GL(3)\). Ann. Math. (2) 164(2), 423–488 (2006)

    Article  MathSciNet  Google Scholar 

  17. Miller, S.D., Schmid, W.: A General Voronoi Summation Formula for \(GL(n,{\mathbb{Z}})\), Geometry and Analysis, Adv. Lect. Math. (ALM), vol. 18(2), pp. 173–224. Int. Press, Somerville, MA (2011)

  18. Oppenheim, A.: Some identities in the theory of numbers. Proc. Lond. Math. Soc. 26, 295–350 (1927)

    Article  MathSciNet  Google Scholar 

  19. Voronoi, M.: Sur un fonction transcendante et ses applications a la sommation de quelques series. Ann. de I’Ecole Norm. Sup. 21(207–267), 459–533 (1904)

    Article  MathSciNet  Google Scholar 

  20. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  21. Wilton, J.R.: A note on Ramanujan’s arithmetical function \(\tau (n)\). Proc. Cambridge Philos. Soc. 25, 121–129 (1929)

    Article  Google Scholar 

  22. Zhou, F.: Voronoi summation formulae on \(GL(n)\). J. Number Theory. 162, 483–495 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debika Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported in part at the Technion by a postdoctoral fellowship. The third author acknowledges the support of the National Science Foundation grant DMS-1601026.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, D., Baruch, E.M. & Bump, D. Voronoi summation formula for Gaussian integers. Ramanujan J 57, 253–274 (2022). https://doi.org/10.1007/s11139-020-00378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-020-00378-4

Keywords

Mathematics Subject Classification

Navigation