Large Hecke eigenvalues and an Omega result for non-Saito–Kurokawa lifts


We prove a result on the distribution of Hecke eigenvalues, \(\mu _F(p^r)\) (for \(r=1,2\) or 3) of a non-Saito–Kurokawa lift F of degree 2. As a consequence, we obtain an Omega result for the Hecke eigenvalues for such an F, which is the best possible in terms of orders of magnitude.

This is a preview of subscription content, access via your institution.


  1. 1.

    Andrianov, A.N.: Euler products corresponding to Siegel modular forms of genus 2. Russ. Math. Surv. 29(3), 45 (1974)

    Article  Google Scholar 

  2. 2.

    Barnet-Lamb, T., et al.: A family of Calabi–Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47(1), 29–98 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Böcherer, Siegfried, Das, Soumya: Characterization of Siegel cusp forms by the growth of their Fourier coefficients. Math. Ann. 359(1–2), 169–188 (2014)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Das, S.: On the natural densities of eigenvalues of a Siegel cusp form of degree 2. Int. J. Numb. Theory 9(01), 9–15 (2013)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Das, S.: Omega results for Fourier coefficients of half-integral weight and Siegel modular forms. In: Ramakrishnan, B., Heim, B., Sahu, B. (eds.) Modular Forms and Related Topics in Number Theory: Kozhikode, India, December 10–14. Springer, New York (2018)

    Google Scholar 

  6. 6.

    Das, S., Sengupta, J.: An Omega-result for Saito–Kurokawa lifts. Proc. Am. Math. Soc. 142(3), 761–764 (2014)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Das, S., Kohnen, W., Sengupta, J.: On a convolution series attached to a Siegel Hecke cusp form of degree 2. Ramanujan J. 33(3), 367–378 (2014)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Gun, S, Paul, B, Sengupta, J.: On Hecke eigenvalues of Siegel modular forms in the Maass space. In: Forum Mathematicum. Vol. 30. 3. De Gruyter. pp. 775-783 (2018)

  9. 9.

    Kim, H.H., Wakatsuki, S., Yamauchi, T.: An equidistribution theorem for holomorphic Siegel modular forms for GSp4 and its applications. J. Inst. Math. Jussieu (2018).

    Article  MATH  Google Scholar 

  10. 10.

    Kohnen, W.: Sign changes of Hecke eigenvalues of Siegel cusp forms of genus two. In: Proceedings of the American Mathematical Society, pp. 997–999 (2007)

  11. 11.

    Liu, J., Ye, Y.: Perron’s formula and the prime number theorem for automorphic L-functions. Pure Appl. Math. Q. 3(2), 481–497 (2007)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Pitale, A., Saha, A., Schmidt, R.: Transfer of Siegel cusp Forms of Degree 2, vol. 232. American Mathematical Society, Providence (2014)

    MATH  Google Scholar 

  13. 13.

    Ram Murty, M.: Oscillations of Fourier coefficients of modular forms. Math. Ann. 262(4), 431–446 (1983)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Rankin, R.A.: An \(\Omega \) result for the coefficients of cusp forms. Math. Ann. 203(3), 239–250 (1973)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Saha, A.: Prime density results for Hecke eigenvalues of a Siegel cusp form. Int. J. Numb. Theory 7(04), 971–979 (2011)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Tsuzuki, M.: Spectral average of central values of automorphic L-functions for holomorphic cusp forms on SO\(_0\)(m,2), II. (2019) arXiv: 1906.01172

  17. 17.

    Weissauer, R.: Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds. Springer, New York (2009)

    Book  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Pramath Anamby.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.D. was supported by a Humboldt Fellowship from the Alexander von Humboldt Foundation at Universität Mannheim during the preparation of the paper, and thanks both for the generous support and for providing excellent working conditions. He also thanks IISc, Bangalore, DST (India) and UGC centre for advanced studies for financial support. During the preparation of this work S.D. was supported by a MATRICS Grant MTR/2017/000496 from DST-SERB, India. P.A. and R.P. were supported by IISc Research Associateship during the preparation of this article and thank IISc, Bangalore for the support.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anamby, P., Das, S. & Pal, R. Large Hecke eigenvalues and an Omega result for non-Saito–Kurokawa lifts. Ramanujan J (2020).

Download citation


  • Hecke eigenvalues
  • Non-Saito–Kurokawa lifts
  • Omega results

Mathematics Subject Classification

  • Primary 11F46